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Abstract— Turn-taking is a crucial aspect of human-robot
interaction, directly influencing conversational fluidity and user
engagement. While previous research has explored turn-taking
models in controlled environments, their robustness in real-
world settings remains underexplored. In this study, we propose
a noise-robust voice activity projection (VAP) model, based on
a Transformer architecture, to enhance real-time turn-taking in
dialogue robots. To evaluate the effectiveness of the proposed
system, we conducted a field experiment in a shopping mall,
comparing the VAP system with a conventional cloud-based
speech recognition system. Our analysis covered both subjective
user evaluations and objective behavioral analysis. The results
showed that the proposed system significantly reduced response
latency, leading to a more natural conversation where both the
robot and users responded faster. The subjective evaluations
suggested that faster responses contribute to a better interaction
experience.

I. INTRODUCTION

In recent years, large language models (LLMs) have ad-
vanced rapidly, driving the development of chatbots and spo-
ken dialogue systems capable of facilitating natural human-
machine interactions. By leveraging LLMs, dialogue robots
have significantly improved language processing accuracy
and response diversity, leading to an increasing number of
real-world applications. In particular, cloud-based speech
recognition and response generation services offer high ver-
satility and ease of system updates and extensions. However,
real-world deployment also presents challenges, such as
network latency and environmental noise, which cannot al-
ways be effectively mitigated. These factors create significant
obstacles to maintaining smooth human-robot interactions in
practical settings.

Turn-taking, a fundamental mechanism that determines
when a system should start and stop speaking, is one of
the most critical functions for ensuring fluid and natu-
ral interactions between humans and robots [1]. However,
in real-world environments such as shopping malls and
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public spaces, where background noise and interruptions
are common, conventional speech-recognition-based end-of-
utterance detection frequently suffers from misrecognition
and delays, leading to turn-taking breakdowns. As a result,
users may interrupt due to impatience, or the robot may
respond at inappropriate moments, causing disengagement
and diminishing the overall user experience [2], [3].

This study applies a voice activity projection (VAP) model,
based on the Transformer architecture [4], to enhance turn-
taking in dialogue robots. VAP is a predictive model that
estimates near-future voice activity for both conversational
participants based on their audio input. By leveraging these
predictions, the robot can regulate its turn-taking behavior
more effectively. The key features of this model include: (1)
End-to-end architecture: Directly predicting turn-taking from
audio waveforms, making it robust against speech recogni-
tion errors. (2) Continuous, full-duplex processing: Allowing
turn-taking prediction even while the user is still speaking.
(3) Lightweight design: Enabling real-time processing in
local environments, even without a GPU [5].

While prior research has implemented a VAP model in
a dialogue robot [6], no studies have focused on training
a noise-robust VAP model and validating its performance
through real-world field experiments. In this study, we en-
hance the VAP model by training it on simulated multi-
condition data, including noisy environments, to improve
turn-taking prediction accuracy in practical settings.

To evaluate the effectiveness of the proposed system, we
deployed the robot in a shopping mall and conducted a
comparative experiment against a conventional cloud-based
speech-to-text system. The evaluation included subjective
user assessments (e.g., smoothness and satisfaction) along-
side objective behavioral analyses, such as system and user
reaction times. By examining these factors from multiple
perspectives, we aimed to uncover qualitative improvements
in interaction quality resulting from the enhanced turn-taking
system. Conducting such a detailed subjective-objective be-
havioral analysis in real-world field experiments represents
a novel approach that has rarely been explored in previous
studies.

The contributions of this study are as follows:
• We developed a noise-robust VAP model by training it

on multi-condition data simulating real-world environ-
ments and integrated it into a dialogue robot.

• We conducted a real-world field experiment in a pub-
lic shopping mall, evaluating the robot’s performance
through both subjective user assessments and objective,
quantitative behavioral analyses.
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II. RELATED WORK

Traditional spoken dialogue systems typically determine
turn-taking using end-of-utterance detection based on silence
or explicit cues, such as pressing a button. A common heuris-
tic is to wait for a fixed period of silence (e.g., 500 ms or 1 s)
before the system takes its turn [1]. While these methods are
straightforward and reduce turn-taking complexity, they often
result in unnatural interactions. Silence-based approaches
also struggle in noisy environments, where background noise
can interfere with voice activity detection, leading to turn-
taking errors.

Recent advancements leverage Transformer-based models
to predict turn shifts more accurately [7], [8], [9]. A recent
notable innovation is the VAP model, which predicts future
speech activity from audio inputs in an end-to-end manner
at the frame-wise level [4], [10].

In human-robot interaction (HRI), turn-taking is typically
based on either silence detection or cloud-based speech
recognition systems. Several efforts have been made to
implement turn-taking models in dialogue robots [11], [12].
Research indicates that robots equipped with the latest VAP
technology can respond more quickly than conventional
cloud-based turn-taking systems [6]. However, these systems
have primarily been tested in controlled laboratory environ-
ments and have not yet demonstrated robust performance
in real-world settings, such as shopping malls with ambient
noise.

Within HRI, researchers have extensively studied the ef-
fects of turn-taking, or response delay, on various robotic
platforms. Most studies focus on subjective evaluations such
as user preferences and satisfaction in closed environments
such as laboratories [13], [14], [15], [16], [17], [18]. On the
other hand, while some studies have observed how delays
in robot responses affect user behavior in real-world envi-
ronments [19], [20], research specifically investigating how
response speed influences user behavior change in practical
settings remains relatively unexplored.

III. A NOISE-ROBUST TURN-TAKING MODEL

This section describes a noise-robust turn-taking model
implemented in our robot system used in this study. We first
provide an overview of the VAP model, followed by a newly
trained VAP model designed for robustness in noisy real-
world environments.

A. Voice Activity Projection

Fig. 1 illustrates the architecture of the VAP model.
The input consists of separated audio waveforms from two
speakers, such as a user and a robot, each encoded using
Contrastive Predictive Coding (CPC). The CPC encoder is
pre-trained on 600,000 hours of data from the LibriSpeech
dataset [21], and its parameters remain frozen during VAP
training. The encoded audio from each speaker is processed
by a separate Transformer. These outputs are then passed
through a cross-attention Transformer, allowing the model
to attend to interactions between the two speakers. Finally,
a linear layer specific to each task generates the output.

CPC encoder CPC encoder

Self-attention Transformer Self-attention Transformer

Cross-attention
transformer

Cross-attention
transformer

VAD linear VAP linear

Future voice activity
(VAP) 

Current voice activity
(VAD) 

Participant 1 audio signal Participant 2 audio signal

Fig. 1. Architecture of VAP

200 600 1200 2000 msec

Participant 1

Participant 2

Frame-level
voice activity

Reference
For VAP

Participant 1

Participant 2

𝒑𝒏𝒐𝒘 𝒑𝒇𝒖𝒕𝒖𝒓𝒆

Fig. 2. Prediction state of VAP

The original VAP model is designed for two tasks: voice
activity projection (VAP), which predicts voice activity for
the next two seconds, and voice activity detection (VAD),
which detects ongoing voice activity. For the VAP task, the
upcoming two seconds are divided into four time bins [4],
as shown in Fig. 2. Since both speakers’ voice activity is
considered for each bin, there are 256 possible states (22×4),
and the model predicts a 256-class one-hot vector [22]. The
loss function is defined as follows:

L = Lvap +Lvad , (1)

where Lvap and Lvad represent the cross-entropy losses for
the VAP and VAD tasks, respectively.

In our robotic system, the trained VAP model predicts
the end of the user’s turn while the user is speaking. Thus,
we input the user’s audio into the VAP model and utilize
the accumulated output probabilities for short-term VAP
predictions within a 0-600 ms window, denoted as pnow
in the original VAP study [4]. Note that while the robot’s
audio was set to zero in the current setup, future work will
incorporate the robot’s text-to-speech (TTS) audio into the
model to enable full-duplex interaction.

B. Multi-condition Training for VAP

Previous studies on VAP have primarily trained models
on clean speech with minimal background noise, such as
that found in telephone or online meeting environments.
However, these models are expected to perform poorly in
noisy real-world settings. To address this limitation, we
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Fig. 3. Output example of VAP models - Each graph consists of, from top to bottom, input waveforms of both participants with color-highlighted voice
activity segments (1st and 2nd), and pnow values of multi-condition VAP model (3rd) and conventional clean VAP model (4th)

TABLE I
TEST LOSS FOR VAP TASK (Lvap) IN DIFFERENT NOISE LEVELS

SNR [dB] Travel dataset ERICA dataset
Clean-VAP MC-VAP Clean-VAP MC-VAP

clean 2.37 2.48 2.88 2.90
20 2.85 2.56 3.33 3.08
15 2.84 2.54 3.55 3.14
10 3.02 2.55 3.60 3.17
5 3.17 2.62 4.33 3.42

trained a new VAP model using multi-condition training data
to enhance noise robustness.

To simulate multi-condition environments, we superim-
posed various levels of background noise onto the training
data. The spoken dialogue data used for training included
simulated conversations from an online meeting environment
designed to mimic travel agency interactions (denoted as
Travel)[23], as well as Wizard-of-Oz dialogue data collected
using the android robot ERICA[24] (denoted as ERICA).
Since a field experiment would be in Japan, those training
data were also in the Japanese language. In total, these
datasets comprised approximately 161 hours of dialogue,
which were randomly split into training, validation, and
test sets using an 8:1:1 ratio. The background noise added
to these datasets was sourced from CHiME4 [25], DE-
MAND [26], and MUSAN [27], with signal-to-noise ratios
(SNRs) of 5, 10, 15, and 20 dB. During VAP training,
both the noise type and SNR level were randomly varied.
To evaluate model performance, we measured the VAP
task loss Lvap at each SNR level. Since the VAP model
is designed for real-time operation, it generates predictions
at a frequency of 10 Hz (i.e., 10 predictions per second)
using a 5-second input context sequence for the Transformer
model [5]. As a baseline, we used a model trained without
the aforementioned noise augmentation, corresponding to
previous studies, denoted as Clean-VAP.

The results are presented in TABLE I. In both the Travel
and ERICA datasets, the baseline model (Clean-VAP) exhib-
ited an increase in VAP loss as the SNR decreased, indicating
degraded performance under noisy conditions. In contrast,
the multi-condition VAP model (MC-VAP) demonstrated
improved robustness, maintaining stable performance even
at lower SNR levels. In this study, we deploy this multi-
condition VAP model onto our robot operating in real-world
environments and analyze how turn-taking behavior changes

during actual interactions. Fig. 3 also presents an output
example of both VAP models when the SNR was 5 dB.
Overall, the output of the MC model was relatively clearer
than that of the clean model, and it was able to predict
the next turn-holder earlier. In some cases where turn-shift
occurred between the orange and blue speakers, the clean
model struggled to predict the turn shifts clearly, whereas
the MC model correctly identified them before they actually
happened. Similar advantages were observed in turn-hold
points, where the clean model had difficulty distinguishing
between the two speakers, while the MC model accurately
predicted that the current speaker would continue holding
the turn. Based on these simulation results, the effectiveness
of the MC-VAP model was demonstrated.

IV. REAL-FIELD DIALOGUE EXPERIMENT

We implemented the MC-VAP model in our robot and
evaluated its effectiveness through a real-world dialogue
experiment. This section presents the robot and system
configuration, followed by the experimental results.

A. Experimental Overview

To investigate how differences in a robot’s speech response
speed affect user behavior, we conducted a field experiment
comparing two response speed conditions: a faster response
condition using the MC-VAP model and a slower response
condition using a cloud-based speech recognition system.
While the primary goal of this experiment was to examine
the impact of response speed on user behavior, the study
also provides insights into the practical advantages of the
MC-VAP model in real-world environments.

For this study, we deployed service robots providing route
guidance in a shopping mall (LaLaport EXPOCITY1) and
conducted field experiments. The experiment took place over
two days, from February 4 to 5, 2025, with the robots
operating between 11 AM and 6 PM. The baseline method
and the proposed method, which will be described later,
were each operated for one day. All visitors were informed
about the experiment and the associated video recording
through a notification board. The study was conducted on
an opt-out basis, allowing visitors who did not wish to be
recorded to decline participation. This study was approved
by the Research Ethics Committee of the University of Osaka
(Reference number: R1-5-18).

12-1 Senribanpakukouen, Suita, Osaka, Japan
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Fig. 4. The Sota robot, designed for route guidance, equipped with an
RGB-D camera

B. Robot and System

We developed an interaction system comprising a hu-
manoid social robot and RGB-D image sensors, as shown
in Fig. 4. The social robot used in this experiment was
“Sota”, developed by Vstone Co. Ltd., which has been
widely employed in various HRI studies as a service robot
(e.g., [28]). The humanoid robot stands 0.3 m tall and is
equipped with arms that have two degrees of freedom (DOF),
a head with three DOF, and body gestures with one DOF.
For 3D imaging, we used the ZED2i sensor, which captures
RGB images with a field of view (FOV) of 120 × 110 × 70
deg and depth images with an FOV of 81 × 72 × 44 deg.
The maximum range of the depth sensor is 35 m.

We developed an autonomous guidance system with four
components: Recognition, Turn-taking Detection, Response
Generation, and Modality Control.

1) Recognition: The RGB-D camera captures video to
detect users’ presence and posture in the image [29]. The
system calculates the 3D coordinates of all detected users
relative to the robot’s coordinate frame. Speech input is
captured via a microphone, processed using the Google
Speech-to-Text API (Google STT) [30], and then forwarded
to the system for further interaction.

2) Turn-taking Detection: After receiving a user’s speech
input, the robot employs two distinct systems to determine
when the user has completed their utterance. The first system
utilizes the Google STT, which processes speech input and
transcribes it into text in real-time. While streaming, ongoing
speech is marked as interim, whereas completed utterances
are classified as final. However, because Google STT relies
on a network connection to detect speech completion, net-
work latency directly impacts turn-taking speed. The second
system, the MC-VAP system proposed in this study, predicts
speech completion locally. Since MC-VAP operates on a
local PC, it is expected to facilitate faster turn-taking than

Google STT, which depends on cloud-based processing.
In this experiment, we compare a baseline speech response

system that relies solely on Google STT with a hybrid system
that combines MC-VAP and Google STT. This comparison
aims to examine how response speed influences user behav-
ior. The proposed hybrid system is employed because MC-
VAP alone cannot accurately predict utterance completion for
all speech inputs. In cases where MC-VAP fails, the system
defaults to Google STT.

3) Response Generation: The system includes a GPT-4o-
mini-powered generative model [31]. The generative model
was used to generate Sota’s responses to user’s speech input.
The system incorporated a database containing comprehen-
sive mall information for providing route guidance. When
the system detected the user’s speech completion, the system
combined the dialogue history with the mall information to
generate an appropriate response.

4) Modality Control: The robot’s speech synthesis is
generated using VOICEBOX [32], with the Japanese char-
acter voice “Zundamon”. When the robot is speaking, the
microphone input is turned off because the robot’s own
speech is also input by the microphone. This means that
the system is designed so that the user cannot barge in while
the robot is speaking. In addition to responding verbally,
Sota also gazed at the closest user detected by the RGB-D
camera. This function is intended to increase the conversation
opportunity by drawing the user’s attention to the robot [33].

C. Measurement

We measured not only subjective evaluation by the users
but also objective behavior analysis to investigate how dif-
ferences in a robot’s response speed affect user behavior.

a) Subjective Evaluation: After each interaction, we
asked the users to rate 15 items listed in TABLE II on a
seven-point Likert scale. These items were designed based
on existing metrics, such as User Experience Questionnaire
(UEQ) [34] and Godspeed [35]. Additionally, we created
some original items to complement these metrics regarding
the system response.

b) Behavior Analysis: The recorded dialogue logs and
video-recorded interaction data were analyzed retrospec-
tively. First, the robot’s response time was measured. This
was defined as the time between obtaining the final speech
recognition result of the user’s utterance and the robot
beginning its response. Additionally, the user’s response
time was also measured. In this case, it was defined as the
time between the end of the robot’s utterance and the first
speech recognition result of the user’s subsequent utterance.
The visitors’ behavior during the conversation was also
analyzed. Specifically, the following were manually counted:
interaction time, the number of times the visitor rephrased
their utterance, the number of times the robot and the visitor
spoke simultaneously (speech collisions), the total number
of visitor utterances, the number of questions asked by
the visitor, and the number of times the visitor left the
conversation midway, listed in TABLE III.
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TABLE II
AVERAGE SUBJECTIVE EVALUATION SCORES

Item Baseline Proposed p-value
Smooth conversation 4.67 6.13 .007 **
Appropriate speech content † 5.80 6.13 .442
Naturalness of utterance † 5.87 5.60 .509
Intelligent † 5.67 6.00 .437
Likability † 6.40 6.60 .514
Satisfaction † 5.73 5.93 .696
Practicality 5.67 5.73 .895
Ease of use 5.73 6.67 .048 *
Fulfillment of expectations 5.47 6.53 .045 *
Valuable † 5.87 6.13 .533
Innovative † 5.80 5.67 .830
Able to converse at a good pace † 5.00 5.67 .221
Frustrated with response speed † 3.07 2.60 .583
Would like to use again † 5.27 5.73 .413
Would recommend to others † ‡ 7.13 8.13 .190

† Homogeneity of variance, ‡ 10-point scale (1-10)
* p < .05, ** p < .01

D. Result

Each condition of the proposed and baseline systems could
be evaluated by 15 different visitors, respectively. Table II
shows the results of the users’ subjective evaluation scores.
These results were tested for homogeneity of variance,
and for items where homogeneity of variance was found,
a Student’s t-test was conducted, while for items where
homogeneity of variance was not found, a Welch t-test was
conducted to perform statistical testing. The results showed
that the proposed model had a significantly more positive
impact on the three items of Smooth conversation, Ease of
use, and Fulfillment of expectations.

Fig. 5 illustrates the distribution of the robot’s response
time. Note that these results include interactions not only
with the 15 visitors who completed the subjective evaluations
but also with additional participants, totaling 71 individuals
per condition. The baseline system, which relies solely on
Google STT, exhibits a broad distribution of response times,
frequently exceeding 2 seconds due to network latency, with
an average response time of 2.14 seconds. In contrast, the
proposed system, which incorporates the MC-VAP model,
significantly reduces response latency, with an average re-
sponse time of 1.15 seconds. Within this system, turn-
taking decisions were determined using MC-VAP in 51.0%
of cases and Google STT in 49.0%, indicating that the
system dynamically switches between these two methods. To
further analyze the impact of MC-VAP, we extracted only
the instances where MC-VAP was used and plotted them
separately as the “Proposed (VAP only)” condition. This
subset of data reveals that when the VAP model alone was
responsible for turn-taking decisions, the average response
time was further reduced to 0.71 seconds. A Mann-Whitney
U test confirmed that the differences among conditions were
all statistically significant (p < .01). These results highlight
the effectiveness of MC-VAP in enabling faster and more
fluid interactions in real-world dialogue settings.

Fig. 6 presents the distribution of users’ response times.
The baseline system shows a relatively wide distribution
of response times, with an average response time of 2.61
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Fig. 5. Distribution of robot response time
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Fig. 6. Distribution of user response time

seconds. In contrast, the proposed system results in a slightly
faster, with an average response time of 2.35 seconds. This
result suggests that users adapt more quickly to the system’s
faster responses, facilitating a more natural and fluid interac-
tion. A Mann-Whitney U test confirmed that the difference
in user response times between the baseline and proposed
systems was statistically significant (p < .01). This indicates
that reducing the robot’s response time has a measurable
impact on user behavior, encouraging more immediate turn-
taking and engagement.

TABLE III presents the objective analysis of user be-
haviors under the baseline and proposed system conditions.
These results, as well as the users’ subjective evaluation,
were tested for homogeneity of variance using Student’s or
Welch t-tests. Overall, the results indicate that while the
proposed system improved response speed, it did not lead
to statistically significant changes in users’ behaviors.

V. CONCLUSION

This study evaluated the effectiveness of the multi-
condition voice activity projection (MC-VAP) model through
a field experiment in a shopping mall. The results confirmed
that MC-VAP significantly reduced response latency while
maintaining stable performance. The results also showed that
users responded more quickly under the proposed system,
leading to a more natural conversation. These improvements
were reflected in higher subjective ratings for “Smoothness
of conversation,” “Ease of use,” and “Fulfillment of expec-
tations,” suggesting that faster response speeds contribute to
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TABLE III
AVERAGE VALUES OF USER BEHAVIORS

Item Baseline Proposed p-value
Interaction time [s] 53.74 55.51 .819
Number of rephrases 0.65 0.55 .596
Number of collisions † 0.35 0.34 .863
Number of visitor utterances 5.67 6.00 .448
Number of visitor questions 1.30 1.28 .963
Visitor left [%] 10.81 14.08 -

† Homogeneity of variance

a better user experience. However, the objective behavioral
analysis, except for response time, did not change signif-
icantly. This suggests that while reducing response latency
enhances perceived interaction quality, it does not necessarily
lead to behavioral changes in real-world settings.

This study was conducted in a single real-world setting,
and future research should explore different environments to
assess generalizability, including language differences [22].
Additionally, while the findings indicate that faster response
speeds improve conversational smoothness, further investi-
gation is needed to determine their influence on actual user
behaviors, which did not show significant improvement in
this experiment. A deeper understanding of these behavioral
changes will help refine real-world turn-taking strategies
for dialogue robots, ensuring both subjective and behavioral
enhancements in human-robot interactions.
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