Infinite Positive Semidefinite Tensor Factorization for Source Separation of Mixture Signals

Kazuyoshi Yoshii1 Ryota Tomioka2 Daichi Mochihashi3 Masataka Goto1
1National Institute of Advanced Industrial Science and Technology (AIST)
2The University of Tokyo 3The Institute of Statistical Mathematics (ISM)

Conventional: Nonnegative Matrix Factorization (NMF)
Each nonnegative vector is approximated by a convex combination of nonnegative vectors.

\[x_n \approx \sum_{k=1}^{K} \omega_k h_{kn} \]

- **Vector-wise factorization**
- **Basis matrix** \(X = [x_1, \ldots, x_N] \in \mathbb{R}^{M \times N} \)
- **Activation matrix** \(H = [h_1, \ldots, h_K] \in \mathbb{R}^{K \times N} \)
- **Reconstruction error** (Bregman divergence)
 \[\phi(x) = \| \phi(x) - \phi(y_n) \| \]
 \[D_k(x_n, y_n) = \phi(x_n) - \phi(y_n) + \phi(y_n)^T(x_n - y_n) \]
- **Kullback-Leibler (KL) divergence**
 \[D_k(x_n, y_n) = \sum_m \left(x_{mn} \log x_{mn} - x_{mn} - y_{mn} \log y_{mn} + y_{mn} \right) \]
- **Itakura-Saito (IS) divergence**
 \[D_k(x_n, y_n) = \sum_m \left(\log x_{mn} y_{mn} - x_{mn} - y_{mn} \right) \]

Given \(X \), NMF tries to estimate \(W \) and \(H \) such that \(C(X|Y) = \sum_n D_k(x_n, y_n) \) is minimized.

- **Maximum likelihood estimation**

Proposed: Positive Semidefinite Tensor Factorization (PSDTF)
Each positive semidefinite matrix is approximated by a convex combination of positive semidefinite matrices.

\[X_n \approx \sum_{k=1}^{K} V_k h_{kn} \]

- **Matrix-wise factorization**
- **Observed tensor** (PSD matrices)
 \(X = [X_1, \ldots, X_N] \in \mathbb{R}^{M \times N \times N} \)
- **Basis tensor** (PSD matrices)
 \(V = [V_1, \ldots, V_K] \in \mathbb{R}^{M \times K} \)
- **Activation (nonnegative tensors)**
 \(H = [h_1, \ldots, h_K] \in \mathbb{R}^{K \times N} \)

Reconstruction error (Bregman divergence)
\[D_k(X_n|Y_n) = \phi(X_n) - \phi(Y_n) - \text{tr}(V_f \phi(Y_n)^T(X_n - Y_n)) \]

von Neumann (vN) divergence
\[D_k(X_n|Y_n) = \text{tr}(X_n \log X_n - X_n + Y_n) \]

Log-determinant (LD) divergence
\[D_k(X_n|Y_n) = -\log |X_n| + \text{tr}(X_n^{-1} - Y_n) \]

- **Global weight vector** \(\theta = \left[\theta_1, \ldots, \theta_K \right] \in \mathbb{R}^K \)

Application to Single-Channel Audio Signal Separation
- **Time-domain decomposition** of mixture signals based on LD-PSDTF and Wiener filtering.

\[\hat{x}_n \sim N(0, V_k) \]

The reproducing property of the Gaussian gives
\[\log p(X_n|Y_n) \leq -\frac{1}{2} \log |Y_n| - \frac{1}{2} \text{tr}(X_n^{-1}) \]

Application to Multi-Channel EEG Signal Analysis
- **Unsupervised learning** of characteristic brain activity patterns based on LD-PSDTF.

Task: predict a left or right hand movement (-1 or 1) for a given EEG.
- **Future Work**
 - Reduce the heavy computational cost
 - Investigate vN-PSDTF (extension of KL-NMF)