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ABSTRACT

This paper presents probabilistic n-gram models for sym-
bolic chord sequences. To overcome the fundamental lim-
itations in conventional models—that the model optimality
is not guaranteed, that the value of n is fixed uniquely, and
that a vocabulary of chord types (e.g., major, minor, · · · ) is
defined in an arbitrary way—we propose a vocabulary-free
infinity-gram model based on Bayesian nonparametrics. It
accepts any combinations of notes as chord types and allows
each chord appearing in a sequence to have an unbounded
and variable-length context. All possibilities of n are taken
into account when calculating the predictive probability of
a next chord given a particular context, and when an unseen
chord type emerges we can avoid out-of-vocabulary error by
adaptively evaluating the 0-gram probability, i.e., the com-
binatorial probability of note components. Our experiments
using Beatles songs showed that the predictive performance
of the proposed model is better than that of the state-of-the-
art models and that we could find stochastically-coherent
chord patterns by sorting variable-length n-grams in a line
according to their generative probabilities.

1. INTRODUCTION

Chord progression analysis is an important task for content-
based music information retrieval (MIR) [1,2]. Because the
chord patterns used in musical pieces are closely related to
the composer styles [3] and musical genres [4], it is useful
to build statistical models of chord patterns from symbolic
chord sequences. In addition, accurate models of chord se-
quences (called language models in analogy with automatic
speech recognition) could improve the accuracy of auto-
matic chord recognition for music audio signals [5, 6].

So far, n-gram models have often been used as language
models of chord sequences [2–6]. An n-gram is a subse-
quence of n chords in a given chord sequence, and n-gram
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Figure 1. A hierarchical nonparametric Bayesian model for
accurately smoothing n-gram probabilities.

models are based on (n−1)-order Markovian assumption be-
cause chords exhibit strong short-term dependency. In other
words, each chord in a given sequence is assumed to de-
pend on its n−1 previous chords called a context. Using
a limited amount of observed data, the goal is to make a
statistical model that can calculate the predictive probability
of a next chord (n-gram probability), given any context of
length n−1. However, the observed n-grams are generally a
limited subset of all kinds of n-grams, and the number of all
kinds of n-grams increases exponentially with increasing n.
Therefore, the naive estimates of the probabilities of unob-
served n-grams are zero. To avoid such overfitting, various
heuristic smoothing methods have been developed [7].

In this paper we focus on three fundamental limitations
of conventional n-gram models: 1) n-gram models based on
heuristic smoothing methods have no solid theoretical foun-
dation, 2) the value of n should be specified uniquely in ad-
vance even though each chord depends on a variable-length
context, 3) A limited set of chord labels (e.g., major, minor,
augmented, diminished, seventh, · · · , and their derivations)
should be defined as a vocabulary in advance. Especially,
the last limitation has not been discussed so far.

To overcome these limitations, we propose a vocabulary-
free infinity-gram model by extending modern nonparamet-
ric Bayesian n-gram models [8–10]. Our model is formu-
lated in a hierarchical Bayesian manner (Figure 1) and has
the following merits: 1) The predictive distribution of a next
chord can be naturally formalized by providing the proba-
bilistic generative model of chord sequences. 2) Each chord
in a sequence is allowed to have an unbounded and variable-
length context. A posterior distribution of the context length
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can be estimated. 3) Any combinations of notes can be ac-
cepted as chord types. A chord vocabulary is incrementally
expanded as needed. These metits enable our model to not
only attain the best performance but also find “stochastically-
coherent” variable-length chord patterns that are not always
simply the ones used most frequently (cf. [11]).

The innovative models of symbolic chord sequences (an
infinity-gram model and its vocabulary-free extension) are
useful for probabilistic modeling of music audio signals. A
typical application is automatic chord recognition, where a
vocabulary of chord labels is given. For example, an infinity-
gram model could be fused with a joint probabilistic model
of keys, chords, and bass notes [12]. Another novel applica-
tion is automatic music transcription, where a vocabulary is
not given. We plan to use a vocabulary-free model as a prior
distribution on a probabilistic acoustic model for multipitch
estimation [13], and jointly optimize the both models. This
means that chords and their progressions (now “chords” are
combinations of notes, not text labels) are self-organized in
an unsupervised manner and are used as a constraint on si-
multaneous and temporal pitch distributions.

The rest of this paper is organized as follows: Section 2
describes the chord notations used in this study. Section 3
introduces related work on nonparametric Bayesian n-gram
models and Section 4 explains our model. Section 5 reports
our experiments and Section 6 concludes this paper.

2. CHORD NOTATIONS

We introduce label-based and component-based notations to
represent chord sequences (Table 1).

2.1 Label-based Notation
The conventional label-based notation is based on intuitive
shorthand labels defined by Harte et al. [14]. There are 17
chord labels with an attached root note, which is one of 12
pitch classes.1 In this paper we do not distinguish C# from
Db because they are in the same pitch class. This is a stan-
dard treatment used in [2, 3]. For example, C major and
Gb diminished seventh chords are respectively represented
as C:maj and F#:dim7. The symbol “N” is used to indicate
“no chord” (e.g., silence or untuned sounds). The resulting
vocabulary size is 205 (17 × 12 + 1).

2.2 Component-based Notation
The component-based notation is based on degrees of note
components (relative displacements against a root note). Each
chord is represented as a combination of a root note and a
12-dimensional binary vector whose elements indicate the
existences of the corresponding degrees. For example, C
major chords are written as C:100010010000 and D major
chords as D:100010010000, not as D:001000100100. Note
that any combinations of notes can be represented even if

1 The pitch classes are defined as 12 different scales within an octave,
i.e., {C, C#, D, D#, E, F, F#, G, G#, A, A#, B}.

Chord type Label Components
Major maj 100010010000
Minor min 100100010000
Diminished dim 100100100000
Augmented aug 100010001000
Major Seventh maj7 100010010001
Minor Seventh min7 100100010010
Seventh 7 100010010010
Dim. Seventh dim7 100100100100
Half Dim. Seventh hdim7 100100100010
Min. (Maj. Seventh) minmaj7 100100010001
Major Sixth maj6 100010010100
Minor Sixth min6 100100010100
Ninth 9 101010010010
Major Ninth maj9 101010010001
Minor Ninth min9 101100010010
Suspended Second sus2 101000010000
Suspended Fourth sus4 100001010000

Table 1. Shorthand labels and pitch-class components

they are not defined in Table 1. For example, C major chords
with an added fourth are written as C:100011010000. Such
information is available in Harte’s chord annotations [14].
With the additional symbol “N”, the resulting vocabulary
size is 49153 (212 × 12 + 1). This is finite because we fo-
cus on note existences in individual pitch classes. Note that
a truly vocabulary-free (infinite-vocabulary) notation can be
defined by focusing on note counts based on musical scores,
i.e., by representing note components of each chord as a 12-
dimensional nonnegative-integer vector.

3. PROBABILISTIC LANGUAGE MODELS

This section introduces related work on n-gram models. We
first identify the purpose of n-gram modeling and then ex-
plain several state-of-the-art models based on the probability
theory of Bayesian nonparametrics.

3.1 Problem Specification
Suppose we have a chord vocabulary W whose size is V
(in this paper, 205 or 49153). Let w ∈ W be a chord and
u ∈ Wn−1, where n can be any positive integer, be a con-
text consisting of a sequence of n−1 chords. We have a
limited amount of observed data X , which is a sequence of
M chords, x1x2 · · ·xM , where xm ∈ W (1 ≤ m ≤ M).
We assume for simplicity that we have only one chord se-
quence. In n-gram modeling, each chord xm is assumed to
depend on the past n−1 chords (context).

Given observed data X , the goal is to estimate Pu(w|X),
i.e., the predictive probability of chord w following context
u. Let cuw be the number of occurrences of chord w fol-
lowing context u in training data X . The naive maximum
likelihood (ML) estimate is given by

P ML
u (w|X) =

cuw

cu·
(1)

where the dot (·) means the sum over that index, i.e., cu· =∑
w′ cuw′ . However, if n-gram uw is not observed in X
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(cuw = 0), its probability is estimated to be zero. This is
called the zero-probability problem.

To solve this problem various smoothing methods have
been proposed. The family of Kneser-Ney (KN) smoothing
is empirically known as one of the most accurate smoothing
techniques [7]. A method called interpolated KN (IKN) es-
timates Pu(w|X) by discounting the actual count cuw by
a fixed amount d|u| depending on the context length |u|
if cuw > 0 (otherwise the count remains 0). Furthermore,
the discounted n-gram probability of chord w is interpo-
lated with the (n−1)-gram probability of chord w. Another
important variant is called modified KN (MKN), where the
amount of discount is allowed to vary according to the value
of cuw. MKN is known to slightly outperform IKN.

3.2 Hierarchical Pitman-Yor Language Model
Teh [8] proposed a nonparametric Bayesian n-gram model
called a hierarchical Pitman-Yor language model (HPYLM).
Interestingly, IKN was proven to be a deterministic approx-
imation of the HPYLM, which can be optimized in a princi-
pled way and performs better than IKN.

3.2.1 Pitman-Yor Process and Hierarchical Formulation
We briefly explain the Pitman-Yor process (PY) [15], which
is a building block of nonparametric Bayesian models. The
PY is a distribution over distributions (e.g., n-gram distribu-
tions) over a sample space (e.g., vocabulary W ). Let d and
θ be positive real numbers and G0 be a distribution over a
sample space. The PY is written as

G ∼ PY(d, θ, G0) (2)

where d is called a discount parameter, θ a strength parame-
ter, and G0 a base measure. G is a random distribution over
the sample space. When the value of θ becomes larger, G is
more likely to be similar to G0.

The HPYLM is formulated by layering PYs in a hierar-
chical Bayesian manner. Suppose we have a unigram distri-
bution Gφ over W , where φ is the empty context and Gφ(w)
is the unigram probability of chord w. A bigram distribution
Gu given the last chord u differs from but is somewhat sim-
ilar to Gφ. Here Gu is assumed to be drawn from a PY with
base measure Gφ as Gu ∼ PY(d1, θ1, Gφ), where d1 and θ1

are discount and strength parameters that are shared among
contexts of length 1. Generally speaking, an n-gram distri-
bution Gu given a context u of length n−1 is drawn from a
PY with base measure Gπ(u) as follows:

Gu ∼ PY(d|u|, θ|u|, Gπ(u)) (3)

where π(u) is a shortened context obtained by removing
the earliest chord from u, and d|u| and θ|u| are discount and
strength parameters depending on the length |u|. Since the
(n−1)-gram distribution Gπ(u) is unknown, a PY prior with
parameters d|π(u)| and θ|π(u)| and base measure Gπ(π(u))

is recursively put on Gπ(u). Finally, the unigram distribu-
tion Gφ is given by Gφ ∼ PY(d0, θ0, G0) where G0 is a
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Figure 2. Hierarchical Pitman-Yor language model.

global base measure (0-gram distribution), which is usually
assumed to be uniform, i.e., G0(w)=1/V .

Consequently, the hierarchical structure of the HPYLM
can be represented as a suffix tree of depth n−1, as shown in
Figure 2 where the case of n=3 is illustrated. Each node is
identified as a context, i.e., descending the tree from the root
node to the target node means back-tracking the context.

3.2.2 Stochastic Process for Data Generation
Once the HPYLM is defined, observed data X is generated
according to a stochastic process called the Chinese restau-
rant franchise (CRF), which can be explained by using a
metaphor in which contexts are likened to restaurants, M
observed variables in X are likened to customers, and V
chord types in W are likened to dishes. Each restaurant is
allowed to have an unbounded number of tables and each ta-
ble is served a dish. Each customer enters a restaurant, sits
at a table, and eats a dish served at that table.

We suppose that x1, · · · , xM are generated sequentially,
and consider how the m-th customer xm behaves, given a
seating arrangement of the past customers {x1, · · · , xm−1}.
The customer xm enters restaurant u=xm−(n−1) · · ·xm−1

of depth n−1. Let tuw be the number of tables serving dish
w in restaurant u. There are tu· tables in total. Let cuwk be
the number of customers sitting at table k and eating dish w
(cuwk = 0 if table k does not serve dish w). The customer
xm then sits (i) at an existing table k (1 ≤ k ≤ tu·) and eats
a dish w served at the table with probability proportional to
cuwk−d|u| or (ii) at a new table k = tu·+1 with probability
proportional to d|u|tu·+θ|u|. In the case (i), the value of xm

is set to w and cuwk is incremented. In the case (ii), to order
a dish served at the new table k, a proxy customer is sent to
the parent restaurant π(u), where he behaves in a recursive
manner. If he eventually eats a dish w in restaurant π(u),
the dish w is also served at the new table k in restaurant u
and the customer xm eats the dish w. Consequently, tuw is
incremented, the value of xm is set to w, and cuwk is incre-
mented. Note that when the proxy customer sits at a new
table in restaurant π(u), a new proxy customer is further
sent to the restaurant π(π(u)). Finally, a proxy customer
may be sent to the root restaurant φ. When he sits at a new
table in the root restaurant φ, a dish served at the new table
is chosen according to the global base measure G0.
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More specifically, given a particular seating arrangement
(denoted by S), a next chord w following context u is gen-
erated according to the following predictive distribution:

P HPY
u (w|S) =

cuw· − d|u|tuw

cu·· + θ|u|
+

d|u|tu· + θ|u|
cu·· + θ|u|

P HPY
π(u)(w|S) (4)

where Eqn. (4) is a recursive definition with respect to con-
text u of any length, e.g., P HPY

π(u)(w|S) is given by substi-
tuting π(u) into u in Eqn. (4). Starting with an empty tree
(cuwk = 0 and tuw = 0), a seating arrangement for X is
obtained by adding M customers one by one. The IKN was
found to be an approximation of the HPYLM (the HPYLM
reduces to the IKN when θ|u| = 0 and tuw = 1).

3.2.3 Predictive Distribution and Bayesian Inference
The goal is to estimate the predictive distribution Pu(w|X)
in a Bayesian manner. Since a true seating arrangement for
X is unknown, the expected value of P HPY

u (w|S) is calcu-
lated under the CRF P (S|X) as follows:

P HPY
u (w|X) =

∑

S

P HPY
u (w|S)P (S|X) (5)

Because this sum is analytically intractable, Gibbs sampling
is used for approximation. More specifically, we get

P HPY
u (w|X) ≈ 1

L

L∑

l=1

P HPY
u (w|Sl) (6)

where L is the number of many i.i.d. seating arrangements
sampled from p(S|X) and l is a sample index.

The Gibbs sampling algorithm is shown in Figure 3. First,
a seating arrangement is initialized by adding all customers
one by one according to the posterior CRF, where each cus-
tomer xm =w sits at an existing or new table serving dish w
with probability given by the first or second term of Eqn. (4).
Then a customer xm is selected randomly and removed from
the tree, from which the related proxy customers and tables
that become empty are also removed. Given a seating ar-
rangement of the other customers, the customer xm is added
to the tree again according to the posterior CRF. By iterat-
ing this operation, L seating arrangements are sampled with
a certain interval. Since the parameters d0, · · · , dn−1 and
θ0, · · · , θn−1 are unknown, beta and gamma prior distribu-
tions are put on them and the values of the parameters are
sampled from posterior distributions (see details in [8]).

3.3 Variable-Order Pitman-Yor Language Model
A problem of the HPYLM is that all M customers are forced
to enter restaurants of fixed depth n−1. To solve the prob-
lem, Mochihashi and Sumita [9] proposed a variable-order
PY language model (VPYLM) that allows each customer to
enter a restaurant of variable depth. Each chord xm is asso-
ciated with a latent variable zm that indicates the value of n
(depth+1). Since a true value of zm is unknown, all possi-
ble values of zm are considered (n is marginalized out) for
making predictions, resulting in the infinity-gram model.

for  m = 1 : M in random order
Add customer        to the tree at depth n-1

m
x

for  i = 1 : ∞
for  m = 1 : M in random order

Remove customer         from the tree
Add customer         to the tree at depth n-1

m
x

m
x

Create an empty tree

Figure 3. Gibbs sampling algorithm for HPYLM.

3.3.1 Stochastic Process for Data Generation
We consider how the value of n-gram length zm is stochas-
tically determined. The customer xm descends the tree by
following a path φ→ xm−1 → xm−2 → · · · , i.e., by back-
tracking the context u. When he arrives at restaurant ui of
depth i (0≤ i≤∞), he stops there with probability ηui

or
passes through with probability 1 − ηui . The probability of
zm = n (1≤n≤∞) is therefore given by

Pu(n|η) = ηun−1

n−2∏

i=0

(1 − ηui
) (7)

Since η (a set of parameters) is unknown, beta prior distribu-
tions with hyperparameters α and β are put on η as follows:

p(η) =
∏

u∈tree
Beta(ηu|α, β) (8)

Given the value of zm, the value of xm is stochastically
determined according to the CRF described in Section 3.2.2.
Note that there are not only proxy customers but also origi-
nal customers in restaurants other than leaf nodes.

More specifically, given a particular seating arrangement
denoted by S, a next chord w following context u is gener-
ated according to the following predictive distribution:

P VPY
u (w|S) =

∑

n

P VPY
u (w|n, S)Pu(n|S) (9)

where P VPY
u (w|n, S) is obtained in the same way as Eqn. (4)

and Pu(n|S)=
∫

Pu(n|η)p(η|S)dη is easily calculated by
using the conjugacy between Eqns. (7) and (8) (see [9]).

3.3.2 Predictive Distribution and Bayesian Inference
The predictive distribution of a next chord w is obtained in
the same way as the HPYLM (Section 3.2.3). The only dif-
ference with respect to Gibbs sampling is that the VPYLM
needs to sample the value of zm from its posterior distribu-
tion before adding customer xm to the tree. When xm =w,
the posterior probability of zm =n is given by

Pu(n|S, w) ∝ Pu(w, n|S) = P VPY
u (w|n, S)Pu(n|S) (10)

3.4 Nested Pitman-Yor Language Model
An essential problem of standard n-gram models is that we
need to define a finite vocabulary even though in the real
world the vocabulary is growing steadily. To solve this prob-
lem in the context of word sequence modeling, Mochihashi
et al. [10] proposed a nested PY language model (NPYLM)
by formulating a global base measure G0 over a countably
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infinite number of variable-length words. Note that the con-
ventional base measure G0(w) = 1/V cannot be used be-
cause G0(w)→ 0 when V →∞. Instead, a spelling model
based on a letter-level VPYLM is given as a global base
measure G0 of a word-level VPYLM. More specifically, each
word is regarded as a sequence of letters, which are assumed
to follow a letter-level CRF. The word length (the number
of letters) is assumed to follow a Poisson distribution. Thus,
the 0-gram probability of any word w, G0(w), is given by
the product of the probabilities of the letters and their num-
ber, resulting in the infinite-vocabulary model.

4. VOCABULARY-FREE INFINITY-GRAM MODEL
For chord sequence modeling we propose a novel vocabulary-
free infinity-gram model similar in spirit to the NPYLM.

4.1 Mathematical Formulation
A critical problem is that we cannot apply the NPYLM to
chord sequence modeling. Because words are temporal se-
quences of letters and chords are simultaneous combinations
of notes, we need a different base measure G0.

To solve this problem, we formulate a probabilistic model
based on the component-based notation (Section 2.2) as a
global base measure G0 of a chord-level VPYLM. The base
measure G0 is based on a conjugate model. In general, a
chord w can be written as w0:w1 · · ·w12, where w0 is a
root note and the other variables take binary values. When
w=N, w0 = N and other variables are not used. We assume
w0 to follow a 13-dimensional discrete distribution and the
others to follow Bernoulli distributions as follows:

G0(w) = p(w|π, τ ) = πw0

12∏

i=1

τwi
i (1 − τi)

1−wi (11)

where π = {πC, πC#, · · · , πB, πN} indicates the probabilities
of the respective pitch classes and “N” and τ ={τ1, · · · ,τ12}
indicates the existence probabilities of the respective de-
grees. If w =N , G0(w)=πN. Since the values of π and τ
are unknown, we put prior distributions as follows:

p(π, τ ) = Dir(π|a0)

12∏

i=1

Beta(τi|b0, c0) (12)

where a0, b0, and c0 are hyperparameters (set to 0.5).

4.2 Bayesian Inference
Given a seating arrangement S, the posterior distribution of
π and τ can be easily calculated as follows:

p(π, τ |S) = Dir(π|a0+n)
12∏

i=1

Beta(τi|b0+ni, c0+n̄i) (13)

where nv (v is one of the pitch classes or “N”) is the number
of tables serving dishes with root note v (w0 = v) in the root
restaurant φ, ni is the number of tables serving dishes with
the i-th note (wi = 1) in φ, and n̄i is the number of tables
serving dishes without the i-th note (wi = 0) in φ.

The predictive distribution of a next chord w can be cal-
culated in the same way as the VPYLM (Section 3.3.2). The
Gibbs sampling algorithm of the VPYLM is modified as fol-
lows: When a (proxy) customer sits at a new table (a new
table is added) in the root restaurant φ, the values of nv and
ni or n̄i are incremented according to the components of the
target chord (a dish served at that table). When a table is re-
moved from the root restaurant φ, the values of nv and ni

or n̄i are decremented. The values of π and τ are sampled
from the posterior distribution given by Eqn. (13).

5. EXPERIMENTS
This section reports our comparative experiments.

5.1 Experimental Conditions
We used a standard dataset of chord sequences for 180 Bea-
tles songs collected from 12 albums (13 CDs) [14]. Be-
cause the choice of chords depends on the musical key, we
selected 137 major-scale non-transposition songs and trans-
posed them to C major. The total number of chords was
10,761, where 103 chord types were observed in the label-
based notation (the vocabulary size was 205) and 149 chord
types were observed in the component-based notation (the
vocabulary size was 49153). The entropies of both data were
3.79 [bits] and 3.92 [bits], respectively.

In the first experiment using the label-based notation, the
effectiveness of infinity-gram modeling was evaluated by
comparing six existing methods: Good-Turing (GT), Witten-
Bell (WB), IKN, MKN, HPYLM, and VPYLM, where GT
and WB are classical smoothing methods [7]. In the second
experiment using the component-based notation, the effec-
tiveness of vocabulary-free modeling was evaluated. In ad-
dition to the existing methods, we tested our models that in-
corporate the vocabulary-free base measure G0 into HPYLM
and VPYLM (denoted by prefix “VF-”). To evaluate the pre-
dictive performance, we conducted 10-fold cross validation
and measured perplexity, which indicates the average num-
ber of next-chord candidates (a degree of uncertainty), given
a context. A lower perplexity means better performance.

5.2 Experimental Results
We found in the first experiment that VPYLM yielded the
lowest perplexity (Table 2) and that, as shown in Figure 4,
a posterior distribution over n can be estimated for each
chord. To obtain better predictive performance, it is impor-
tant to marginalize out n (take all possibilities into account)
rather than use a maximum-a-posteriori (MAP) estimate of
n. The training time and memory usage of the VPYLM were
two times shorter and five times smaller than those of the 10-
gram HPYLM because unnecessarily-longer contexts (deep
nodes) do not need to be considered (expanded). We could
discover stochastically-coherent chord patterns (Table 3) by
calculating Pu(w, n|X)=

∑
SPu(w, n|S)P (S|X), which

indicates how likely chord w is to follow context u of length
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n GT WB IKN MKN HPYLM VPYLM
1 16.8 15.6 16.0 15.7 15.8 (±0.03)
2 20.3 14.2 15.2 15.8 14.5 (±0.10) n: posterior sample
3 23.5 15.4 16.0 16.3 16.0 (±0.18) 13.4 (±0.33)
4 25.5 16.8 17.7 15.5 13.9 (±0.25)
5 26.3 17.5 16.2 14.1 13.7 (±0.23) n: MAP estimate
6 27.0 17.8 15.1 13.5 13.6 (±0.23) 12.9 (±0.35)
7 27.3 18.0 14.5 13.3 13.6 (±0.23)
8 27.3 18.0 14.2 13.2 13.6 (±0.22) n: marginalized out
9 27.3 18.0 14.1 13.1 13.5 (±0.23) 11.9 (±0.22)
10 27.3 18.0 14.0 13.1 13.5 (±0.23)

Table 2. Perplexities in label-based notation.
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Figure 4. Hinton-diagram representation of posterior distri-
butions over n at the beginning of the Beatles’ “Let It Be.”

n− 1. For example, C:7 F:7 C:7 is a typical blues-rock pat-
tern that was popularized by the Beatles. We can see that the
Beatles liked to use chord patterns including (major/minor)
seventh chords, which were not so common at that time.

In the second experiment, VF-VPYLM, the vocabulary-
free infinity-gram model, yielded a perplexity significantly
lower than the other models did (Table 4). The performance
advantage was larger than that in the first experiment. This
proves that our model is robust to the data sparseness (large-
or infinite-vocabulary situation).

6. CONCLUSION
We presented a nonparametric Bayesian n-gram model for
chord sequences that requires neither a vocabulary of chord
types nor a predefinition of n. We showed that it performed
significantly better than the state-of-the-art models.

This study opens up a new research direction. We plan to
let computers acquire the concept of “chords” in an unsuper-
vised manner from a large amount of music scores and, ul-
timately, from a large amount of musical audio signals. We
know that certain combinations of notes can form chords. Is
this learned from experience? How reasonable is a defini-
tion of chords? To explore ways to answer this question we
need to consider an infinite number of note combinations as
chord candidates. Bayesian nonparametrics is a promising
generative approach to such kinds of meta-level problems.

Pu(w, n|X) Stochastically-coherent chord pattern (n ≥ 3)
0.701 n = 3: C:7 F:7 C:7
0.682 n = 3: B:maj F:maj G:maj
0.656 n = 3: A:min C:7 F:maj
0.647 n = 3: F:min G:maj C:maj
0.645 n = 4: F:maj F:maj G:maj C:maj
0.632 n = 3: E:min C:7 F:maj
0.630 n = 3: C:maj7 D:min7 E:min7
0.627 n = 4: B:maj F:maj G:maj C:maj
0.622 n = 3: D:min7 G:sus4 G:maj
0.620 n = 5: D:min G:maj C:maj F:maj C:maj

Table 3. Stochastically-coherent chord patterns.

n GT WB IKN MKN
10 38.3 24.4 18.5 17.5

n HPYLM VF-HPYLM
10 18.0 (±0.29) 16.5 (±0.60)

n VPYLM VF-VPYLM
∞ 15.8 (±0.29) 14.6 (±0.55)

Table 4. Perplexities in component-based notation.
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