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ABSTRACT
This paper presents a statistical method that estimates a
musically-natural sequence of musical notes from a vocal
F0 trajectory. Since the onset times and F0s of sung notes
are considerably deviated from the tatums and pitches in-
dicated in a musical score, a score model is crucial for im-
proving time-frequency quantization of F0s. We thus pro-
pose a hierarchical hidden semi-Markov model (HSMM)
that combines a score model representing the rhythms and
pitches of musical notes under musical scales with an F0
model representing the time-frequency deviations of F0s
from the score. In the score model, musical scales are gen-
erated stochastically and note pitches are then generated
according to the scales. Additionally, note onsets follow-
ing a Markov process defined on the tatum grid are gener-
ated. In the F0 model, onset temporal deviations, smooth
note-to-note F0 transitions, and F0 fluctuations are gener-
ated stochastically and added to the score. Given an F0 tra-
jectory, our method estimates the most likely sequence of
musical notes while giving more importance on the score
model than the F0 model. Experimental results showed
that the proposed method outperformed an HMM-based
method having no models of scales and rhythms.

1. INTRODUCTION

Singing voice analysis is important for music information
retrieval because a singing voice usually forms a large part
of the melody line of popular music, and provides much in-
formation about music. Singing voice analysis techniques
such as vocal F0 estimation [1,3,7,9,14] and singing voice
separation [8, 12] have actively been studied and applied
to singer identification [10, 22], karaoke generation [19],
query-by-humming [8], and active music listening [6]. To
leverage musical information conveyed by singing voices,
it is necessary to convert a vocal F0 trajectory to a musical
score containing only discrete symbols.

In this study, we tackle musical note estimation for a
singing voice. This problem is challenging because a vo-
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Figure 1: The generative process of a vocal F0 trajectory
based on a hierarchical hidden semi-Markov model that
combines a score model and an F0 model.

cal F0 trajectory has considerable deviations from the cor-
responding musical score. The pitches and onset times of
musical notes in a musical score can take only discrete val-
ues, whereas a vocal F0 trajectory is a continuous signal
that can dynamically and smoothly vary over time. For
example, the vocal F0 trajectory is modulated by vibrato
and changes smoothly from one musical note to another
by a portamento. These time-frequency deviations cause a
standard transcription system to yield a sequence of musi-
cal notes that are inconsistent with music theory.

To solve this problem, we propose a statistical method
of musical note estimation based on a hierarchical hid-
den semi-Markov model (HHSMM) that combines a score
model for the process generating a sequence of musical
notes and an F0 model for the process generating an F0
trajectory from the note sequence (Fig. 1). A key advan-
tage of the proposed method is that a sequence of musi-
cal notes that sound more natural in terms of music theory
can be obtained by using musical scales and rhythms as
constraints on quantization of vocal F0 trajectories. In the
score model, the semitone-level pitch of each note is deter-
mined depending on a scale that the note belongs to and the
pitch of a previous note. On the other hand, the onset posi-
tion of a note depends on that of a previous note so that the
sequence of notes has appropriate rhythms. Then, the time-
frequency fluctuations are added to a step-function-like F0
trajectory exactly corresponding to a musical score. Given
a vocal F0 trajectory and tatum information, the scales,
musical notes, and deviations, which are latent variables
of the proposed model, are jointly estimated by using a
Markov chain Monte Carlo algorithm.



2. RELATED WORK

In this section, we introduce related work on the analysis
of singing voices.

2.1 Vocal F0 Estimation for Music Audio Signals

Estimation of vocal F0 trajectories for music audio signals
has actively been studied [1, 3, 7, 9, 14], and the outputs
of these methods can be used as inputs of our method.
One of the most basic method is subharmonic summation
(SHS) [7] that calculates the sum of the harmonic compo-
nents of each candidate F0. Ikemiya et al. [9] improved
F0 estimation based on SHS and singing voice separation
based on robust principle component analysis (RPCA) [8]
by using the mutual dependency of those two tasks. Salmon
et al. [21] estimated contours of the melody F0 candidates
by calculating a salience function and then recursively re-
moved contours which do not form a melody line by us-
ing the characteristics of each contour. Durrieu et al. [3]
extracted a main melody by representing accompaniments
with a model inspired by non-negative matrix factoriza-
tion (NMF) and leading voices with a source-filter model.
Mauch et al. [14] modified the YIN [1] in a probabilistic
way so that the modified system could determine multiple
candidate fundamental frequencies and then choose one at
each frame by using an HMM.

2.2 Musical Note Estimation for Singing Voices

Estimation of musical notes from sung melody have been
a hot research topic [6, 11, 13, 15, 17, 18, 20, 23]. A naive
method is to take the majority of vocal F0s in each interval
of a regular grid [6]. Paiva et al. [17] proposed a step-by-
step method with five stages: multipitch detection, mul-
tipitch trajectory construction, segmentation of multipitch
trajectory, elimination of irrelevant notes, and extraction of
notes that form a main melody. Raphael [18] proposed an
HMM-based method that estimates pitches, rhythms, and
tempos when the number of notes is given. The rhythm and
onset deviation models used in [18] are similar to those
used in our method. Laaksonen et al. [11] divided au-
dio data into segments corresponding to keys and notes by
focusing on the boundaries of chords given as input, and
independently estimated the notes based on a score func-
tion. Ryynänen et al. [20] proposed a method based on a
hierarchical HMM in order to capture the different kinds
of vocal fluctuations (e.g., vibrato and portamento) within
one note. In this model, the transition between pitches is
represented in the upper-level HMM and the transition be-
tween the vocal fluctuations is represented in the lower-
level HMM. Molina et al. [15] focused on the hysteresis
characteristics of vocal F0s. Nishikimi et al. [16] proposed
a method based on an HHM that represents the generative
process of a vocal F0 trajectory considering the time and
frequency deviations. Yang et al. [23] proposed a method
based on a hierarchical HMM that represents the genera-
tive process of the f0-∆f0 plane. Mauch et al. [13] devel-
oped a software tool called Tony for extracting pitches. In
this tool, a vocal F0 trajectory is estimated by PYIN [14],
and musical notes are estimated by a modified version of
Ryynänen’s method [20].

3. PROPOSED METHOD

This section explains the proposed method of estimating a
sequence of musical notes from a vocal F0 trajectory. The
method is based on an HHSMM (Fig. 1) that stochastically
generates the F0 trajectory with time-frequency deviations
from a sequence of musical notes depending on musical
scales. The upper part of the proposed model is an HMM
that stochastically generates a sequence of musical notes
according to the scales of keys that are assigned to bars.
The lower part is an HSMM that represents the musical
notes and temporal deviations as latent variables and the
frequency deviations as F0 emission probabilities.

3.1 Problem Specification

The problem we tackle is defined as follows:

Input: A vocal F0 trajectory X= {xt}Tt=1 and 16th-note-
level tatums Y = {(un, vn)}Nn=0,
Output: A sequence of notes Z= {zj=(pj , lj)}Jj=0,

where T is the number of frames in a vocal F0 trajectory, xt
is a log frequency at time t, and N is the number of 16th-
note-level tatums. un ∈ {1, . . ., T+1} is the time of tatum
n and the beginning and end of music are represented as
u0 = 1 and uN = T+1, respectively. vn ∈ {0, . . ., 15} is
the relative position of tatum n in a bar. J is the number of
musical notes estimated by proposed methods, and the j-th
note zj is represented as a pair consisting of an pitch pj ∈
{1, . . . ,K} and a note length lj ∈ {1, . . . , L} in the unit of
tatums, where K is the number of kinds of semitone-level
pitches, and pj indicates any one in {µ1, . . . , µK}, which
is a set of log frequencies corresponding to semitone-level
pitches. For convenience we introduce the initial note z0
that does not appear in the actual score.

3.2 Probabilistic Modeling of Musical Scores

This section describes the score model representing rhythms
and pitches of musical notes under musical scales.

3.2.1 Modeling Key Transitions

Keys are represented as S = {sm}Mm=0, where M denotes
the number of bars in the musical piece and sm denotes
the key at the m-th bar. For convenience, we introduce the
initial bar s0 to which the initial note z0 belongs. Instead
of fixing one key for the whole piece, the key is allowed to
change at bar lines. Each key sm takes one of the 24 values
of {C,C#, · · · ,B} × {major, minor}. The latent variables
S are described by a Markov chain as

p(s0|π) = πs0 , (1)

p(sm|sm−1, ξsm−1
) = ξsm−1sm , (2)

where π∈R24
≥0 is a set of initial probabilities and ξs∈R24

≥0

is a set of transition probabilities.

3.2.2 Modeling Pitch Transitions

The sequence of pitches P is generated by a Markov chain
depending on keys S as follows (Fig. 2):

p(p0|s0,ϕs0) = ϕs0p0 , (3)

p(pj |pj−1, sm,ψsmpj−1
) = ψsmpj−1pj , (4)
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Figure 2: Overview of the score model.

where ϕs∈RK≥0 is a set of initial probabilities, ψsp∈RK≥0

is a set of transition probabilities, and m is the index of
a bar to which the note zj belongs. Moreover, ϕs0p0 and
ψsmpj−1pj are defined as

ϕs0p0 =
ϕ̂ŝ0deg(p0;s0)∑K
p=1 ϕ̂ŝ0deg(p;s0)

, (5)

ψsmpj−1pj =
ψ̂ŝmdeg(pj−1;sm)deg(pj ;sm)∑K
p=1 ψ̂ŝmdeg(pj−1;sm)deg(p;sm)

, (6)

where ŝ∈{major,minor} is the mode of key s and deg(p;s)
∈{0, . . . , 11} is the degree of pitch p in key s (defined as
the relative pitch class of p from the tonic of key s). ϕ̂∗
and ψ̂∗ are the initial and transition probabilities of pitch
classes, given the scales.

3.2.3 Modeling Onset Transitions

Considering the transition between onset positions of adja-
cent notes, the model makes Z have the plausible rhythm.
Let rj−1∈{vn}Nn=1 be the onset position of the j-th note
zj . The transition probability is given by

p(rj |rj−1, ζrj−1
) = ζrj−1rj , (7)

where the distance between rj−1 and rj indicates the note
value lj of note zj . We assume that r0 = v0 and rJ = vN .

3.3 Probabilistic Modeling of F0 Trajectories

The section describes the F0 model that represents the time-
frequency deviations of F0s from the musical score.

3.3.1 Modeling Temporal Deviations

We assume that vocal F0 trajectories include the following
two types of temporal deviations (Fig. 3a):
Onset deviation: the gap between the vocal onset time

and the note onset time.

F0 transitional duration: the time it takes for singing
voices to finish transitioning from one pitch to the next.

The onset deviationsG = {gj}Jj=0 accompanying with
Z are represented as discrete latent variables. Each gj can
take an integer value between −G andG. As with the onset
position model, gj−1 denotes the onset deviation of note
zj . We assume that each gj is independently generated by

p(gj |ρ) = ρgj , (8)

where ρ ∈ R2G+1
≥0 is a set of onset deviation probabilities.

We assume that there are no deviations for the onset of the
first note and the offset of the last note, i.e., g0 = gJ = 0.
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(a) Temporal deviations
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(b) Frequency deviations

Figure 3: Deviations in a vocal F0 trajectory.
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Figure 4: The black bold line represents a sequence of the
location parameters of the Cauchy distributions.

The F0 transitional durations D = {dj}Jj=1 accompa-
nying with Z are also represented as discrete latent vari-
ables. Each dj can take a value from 1 to D. The con-
tinuous transition of vocal F0s between notes zj−1 and zj
is represented by a slanted line spanning dj frames. We
assume that each dj is independently generated as follows:

p(dj |η) = ηdj , (9)

where η ∈ RD≥0 is a set of duration probabilities.

3.3.2 Modeling Frequency Deviations

The vocal F0 trajectoryX is generated by imparting prob-
abilistic frequency deviations to the sequence of notes to
which temporal deviations have already been imparted (Fig.
3b). Assuming that xt is independently generated at each
frame, the emission probability of the j-th note zj is given
by

p(xτj−1:τj−1|pj−1, pj , lj , gj−1, gj , dj , µ̂t, λ)

=

τj−1∏
t=τj−1

{δxt,voicedCauchy(xt|µ̂t, λ) + δxt,unvoiced}

= epj−1pj ljgj−1gjdj , (10)

whereXτ ′:τ−1 indicates xτ ′ , . . . , xτ−1, λ is a scale param-
eter, and µ̂t (Fig. 4) is a location parameter given by

µ̂t=

{µpj
−µpj−1

dj
(t−τj−1)+µpj−1

(τj−1≤t<τj+dj)
µkj (τj−1+dj≤t<τj)

. (11)

When the onset of note zj+1 is located at the n-th tatum,
τj = un + gj and τj−1 = un−lj + gj−1.

3.4 Prior Distributions

We put conjugate Dirichlet priors on categorical model pa-
rameters π, ξ, ϕ̂, ψ̂, ζ, ρ, and η as follows:

πs ∼ Dirichlet(aπs ), ξsk ∼ Dirichlet
(
aξsp

)
,



ϕ̂ŝ ∼ Dirichlet
(
aϕ̂ŝ

)
, ψ̂ŝdeg(p;s)∼Dirichlet

(
aψ̂ŝdeg(p;s)

)
,

ζr ∼ Dirichlet
(
aζr

)
,

ρ ∼ Dirichlet(aρ), η ∼ Dirichlet(aη), (12)

where aπ∈R26
+ , aξs∈R26

+ , aϕ̂ŝ∈R12
+ , aψ̂ŝdeg(p;s)∈R

12
+ , aζr∈R16

+ ,

aρ∈R2G+1
+ , and aη∈RD+ are hyperparameters.

Since the Cauchy distribution does not have a conjugate
prior, we put a Gamma prior on λ as

λ ∼ Gamma
(
aλ0 , a

λ
1

)
, (13)

where aλ0 and aλ1 are shape and rate hyperparameters.

3.5 Bayesian Inference

Given an F0 trajectoryX , we aim to calculate the posterior
distribution p(Q,S,Θ|X), where Q = {P ,L,G,D}
(latent variables) and Θ = {π, ξ, ϕ̂, ψ̂, ζ,ρ,η} (model
parameters). Since this calculation is analytically intractab-
le, we use Markov chain Monte Carlo (MCMC) methods.
To get samples of the latent variables S and Q, forward
filtering-backward sampling algorithms are used. To get
samples of Θ except for λ, a set of parameters with con-
jugate priors, a Gibbs sampling algorithm is used. Since
there is no conjugate prior for the parameter λ, we use
the Metropolis-Hastings (MH) algorithm. Since S and Q
share the sequence of notesZ and are mutually dependent,
each variable is updated as follows:

1. Initialize notes Z with a majority-vote method.
2. Update the sequence of keys S based on given Z.
3. UpdateQ based on given S.
4. Update the model parameters Θ.
5. Return to 2.

3.5.1 Inferring Latent Variables S

Given the sequence of notes Z, each sm is sampled in ac-
cordance with the probability given by

βSsm = p(sm|sm+1:M ,Z), (14)

where sm+1:M represents sm+1, . . . , sM . The calculation
of Eq. (14) and sampling of keys S are performed by the
forward filtering-backward sampling method.

In forward filtering, we recursively calculate the proba-
bility αSsm as follows:

αSs0 = p(p0, s0) = p(p0|s0)p(s0) = ϕs0p0πs0 , (15)

αSsm = p(p0:jm+1−1, sm)

=

jm+1−1∏
j=jm

ψsmpj−1pj

∑
sm−1

ξsm−1smα
S
sm−1

, (16)

where jm is the index of the first note whose onset belongs
to the m-th bar. jm can be calculated from given note val-
ues L.

In backward sampling, Eq. (14) is calculated by using
the values calculated in forward filtering, and keys are sam-
pled recursively as follows:

βSsM = p(sM |Z) ∝ αSsM , (17)

βSsm = p(sm|sm+1:M ,Z) ∝ αSsmξsmsm+1
. (18)

3.5.2 Inferring Latent VariablesQ

The latent variables Q can be estimated in a way similar
to that in which the latent variables S are inferred. In
forward filtering, we recursively calculate the probability
αQpnln,gndn as follows:

αQp0l0g0d0 = p(p0|S) = ϕy0p0 , (19)

αQpnlngndn = p(x1:τn−1, pn, ln, gn, dn|S)

=



0 (ln>n)

ρgnηdnζrnr0
·
∑
p0
ψs1p0pnep0pnln0gndnα

Q
p0l0g0d0

(ln=n)∑
pn′ ,gn′

min(n′,L)∑
ln′

∑
dn′

ρgnηdnζrnrn′ψsm(n′)pn′pn

· epn′pnlngn′gndnα
Q
pn′ ln′gn′dn′ (ln<n)

,

(20)

where τn = un + gn, n′ = n− ln, and m(n′) is the index
of the bar that the n′-th tatum belongs to. pn, ln, gn, and
dn are the variables of forward messages that correspond
to the note whose offset position is at the n-th tatum un.
Note that these variables are different from j-indexed vari-
ables pj , lj , gj , and dj . Since the onset and offset times
of the note zn = (pn, ln) are respectively the (n−ln)-th
tatum and the n-th tatum, the probability p(ln) which ap-
pears in the recursive calculation of Eq. (20) is replaced by
p(rn|rn−ln).

In backward sampling, the posterior distribution of the
latent variables is calculated by using the values calculated
in forward filtering, and notes and temporal deviations are
sampled recursively as follows:

βpN lNgNdN = p(pN , lN , gN , dN |X,S) ∝ αQpN lNgNdN ,

βpn′ ln′gn′dn′

= p(pn′ , ln′ , gn′ , dn′ |pn:N , ln:N , gn:N , dn:N ,X)

∝


0 (ln>n)

epn′pnlngn′gndnψsm(n′)pn′pn

· ζrn′rnρgnηdnα
Q
pn′ ln′gn′dn′ (ln ≤ n)

. (21)

3.5.3 Learning Model Parameters Θ

The posterior distributions of the model parameters with
the prior distributions are calculated using S and Q ob-
tained in the backward sampling steps, and these parame-
ters are sampled according to the posterior distributions as
follows:

π∼Dirichlet(aπ+bπ), (22)

ξs∼Dirichlet
(
aξy+b

ξ
s

)
, (23)

ϕ̂ŝ∼Dirichlet
(
aϕ̂ŝ+b

ϕ̂
ŝ

)
, (24)

ψ̂ŝdeg(p;s)∼Dirichlet
(
aψ̂ŝdeg(p;s)+b

ψ̂
ŝdeg(p;s)

)
, (25)

ζr∼Dirichlet
(
aζr+b

ζ
r

)
, (26)

ρ∼Dirichlet(aρ+bρ), (27)

η∼Dirichlet(aη+bη), (28)



where bπ∈R26
≥0 is a unit vector whose s0-th element is 1.

bξs∈R26
≥0 is a vector whose s′-th element indicates the num-

ber of transitions between adjacent keys y and y′ in the se-
quence of latent variables Y . bρ∈R2G+1

≥0 is a vector whose
g-th element indicates the number of vocal onset devia-
tions of g in sampled Q, and bη∈RD≥0 is a vector whose
d-th element represents the number of F0 transitional du-
rations of d in sampledQ. bζr∈R16

≥0 is a vector whose r′-th
element represents the number of transitions between ad-
jacent note onset positions r and r′ in R= {rj}Jj=0 that
can be calculated from the note values L sampled in back-
ward sampling. Regarding the vector bϕ̂ŝ∈R12

>0, when the
key of the initial bar and the pitch of the initial note are
s0 = s and p0 = p, the value of the element bϕ̂ŝdeg(p;s)
is 1, and the other elements are 0. Regarding the vector
bψ̂ŝdeg(p;s)∈R

12
≥0, the value of bψ̂ŝdeg(p;s)deg(p′;s) is increased

by one when there is a transition from a pitch p to a pitch
p′ under a key s in the sampled latent variables.

To apply the MH sampling to the parameter λ, we define
a random-walk proposal distribution as follows:

p(λ∗|λ) = Gamma(γλ, γ), (29)

where λ∗ is a proposal, λ is the current sample, and γ is
a hyperparameter. The proposal λ∗ is accepted as the next
sample according to the probability given by

A(λ∗, λ) = min

{
L(λ∗)p(λ|λ∗)
L(λ)p(λ∗|λ)

}
, (30)

where

L(λ) = Gamma
(
λ|ϕλ0 , ϕλ1

) J∏
j=0

epj−1pj ljgj−1gjdj , (31)

and {pj , lj , gj , dj}Jj=0 are the values sampled in the back-
ward sampling. The value of λ is updated by λ∗ only when
the value of A(λ∗, λ) is larger than a random number sam-
pled from the uniform distribution U(0, 1).

3.6 Viterbi Decoding

The sequence of latent variables S and Q are estimated
with the Viterbi algorithm with the model parameters that
maximize the joint distribution p(X,Q,S,Θ|Φ) in the
learning process. As in the inference of latent variables, we
initialize Z by the majority-vote method, S is estimated
based on Z, and then Q is estimated depending on the S
estimated in the previous step.

In the Viterbi decoding on keys S, the value ωSs is re-
cursively calculated as follows:

ωSs0= lnϕs0k0+ lnπs0 , (32)

ωSsm=

jm+1−1∑
j=jm

lnψsmpj−1pj+max
sm−1

{
ln ξsm−1sm+ω

S
sm−1

}
. (33)

In the recursive calculation of ωSs , the previous state sm−1

that maximizes the value of ωSsm is memorized as cSsm , and
the keys S are recursively estimated as follows:

sM = arg max
sM

αSsM , (34)

sm−1 = cSsm . (35)

In the Viterbi decoding on variables Q, the value ωQplgd
is recursively calculated as follows:

ωQp0l0g0d0 = wϕ lnϕs0p0 , (36)

ωQpnlngndn

=



− inf (ln>n)

wρ ln ρgn+wη ln ηdn+wζ ln ζrnr0

+maxp0

{
wψ lnψs1p0pn

+we ln ep0pnln0gndn + ωQp0l0g0d0

}
(ln=n)

wρ ln ρgn+wη ln ηdn+wζ ln ζrnrn′

+max(pn′ ,ln′ ,gn′ ,dn′ )

{
wψ lnψsm(n′)pn′pn

+we ln epn′pnlngn′gndn + ωQpn′ ln′gn′dn′

}
(ln<n)

,

(37)

where wϕ, wψ , wρ, wη , wζ , and we are the weight pa-
rameters that control the balance between probabilities. In
the recursive calculation of ωQplgd, the previous states pn′ ,
ln′ , gn′ , and dn′ which maximize the value of ωQpnlngndn
are memorized as cQpnlngndn , and the variablesQ are recur-
sively estimated as follows:

(pN , lN , gN , dN ) = arg max
pN ,lN ,gN ,dN

αQpN lNgNdN , (38)

(pn′ , ln′ , gn′ , dn′) = cQpnlngndn . (39)

4. EVALUATION

We reports comparative experiments conducted to evaluate
the performance of the proposed method in musical note
estimation from vocal F0 trajectories.

4.1 Experimental Conditions

Among the 100 pieces of popular music in the RWC mu-
sic database [5], we used 63 pieces s do not include 32nd
notes, triplets, harmonizing parts, and overlaps of adjacent
notes, which are not considered by the proposed method.
The input F0 trajectories were obtained from the annota-
tion data [4] or automatically estimated by using the state-
of-the-art melody extraction method proposed in [9]. The
annotation data contain unvoiced regions and the estima-
tion data do not. The tatum times and onset positions were
obtained from the annotation data.

The Bayesian inference and Viterbi decoding were in-
dependently conducted for each song. The onset transi-
tion probabilities were learned in advance from a corpus of
rock music [2]. The hyperparameters were aπ=1, aξs=1,
aζr=1, aρ = aη = aλ0 = aλ1 = γ =1, where 1 and 1 re-
spectively represent the matrix and vector whose elements
are all ones. aϕ̂ŝ and aψ̂ŝdeg(p;s) are vectors in which the
elements corresponding to musical notes on the scale of
ŝ are 1 and the others are 0.1. The weight parameters of
the Viterbi algorithm were wϕ = wψ = 29.4, wρ = 2.4,
wη = 2.9, wζ = 48.5, and we = 3.8. To obtain musically-
natural sequences of musical notes, we put more emphasis
on the score model than the F0 model.

For comparison, we tested the majority-vote method as
a baseline and the latest conventional method based on a



Model Input F0s Tatum level Note level

Proposed Ground-truth 72.5± 1.6 28.3± 2.1
method Estimated 68.8± 1.3 30.9± 1.7

With Ground-truth 71.7± 1.6 26.9± 2.0
only rhythms Estimated 67.7± 1.3 29.1± 1.8

With Ground-truth 68.4± 1.6 11.5± 1.3
only scales Estimated 65.5± 1.2 13.7± 1.1

Without scales Ground-truth 67.6± 1.5 10.4± 1.2
& rhythms Estimated 64.6± 1.2 12.7± 1.1

Majority vote Ground-truth 54.1± 1.5 20.1± 1.4
Estimated 61.0± 1.4 22.0± 1.5

HMM [16] Estimated 68.0± 1.2 14.8± 1.3

Table 1: Average matching rates [%] and their standard
errors in tatum and note levels.

semi-beat-synchronous HMM [16]. To evaluate the effec-
tiveness of the score model, we tested four versions of the
proposed method; a method that does not consider scales
(key transition probabilities) and rhythms (onset transition
probabilities), a method considering only scales, a method
considering only rhythms, the full method considering both
scales and rhythms. To accelerate the inference, the search
range of pitches was limited around the pitches estimated
by the majority-vote method.

To evaluate the performance of each method, we cal-
culated tatum-level and note-level matching rates by com-
paring the estimated sequences of musical notes with the
ground-truth data. The tatum-level matching rate is the rate
of the number of tatum units whose pitches were estimated
correctly to the total number of tatum units whose pitches
exist in the ground-truth scores. The note-level match-
ing rate is the rate of the number of musical notes whose
pitches, onsets, and offsets were estimated correctly to the
total number of musical notes in the ground-truth scores.
If adjacent notes in the ground-truth scores have the same
pitch or are connected by a tie, those notes were regarded
as a single note. Since the compared method [16] outputs
a pitch in a 16th-note-wise manner, a sequence of the same
pitches was regarded as a single note.

4.2 Experimental Results

The experimental results are shown in Table 1 1 . The pro-
posed method outperformed the majority-vote method and
the conventional method in terms of both measures. Com-
paring the tatum-level matching rates obtained by the four
versions of the proposed method, we confirmed that the
score model significantly improved the performance of mu-
sical note estimation. The use of the onset transition prob-
abilities (rhythm constraints) was found to be more effec-
tive than that of the key transition probabilities (scale con-
straints). Although the tatum-level matching rate obtained
the proposed method (68.8%) was close to that obtained
by the conventional method (68.0%), the note-level match-
ing rate obtained the proposed method (30.9%) was signifi-
cantly better than that obtained by the conventional method

1 The results of music note estimation by the proposed method are
available online: https://anonymous170428.github.io/
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Figure 5: Musical scores estimated from a ground-truth F0
trajectory by the proposed method and its variant without
scale and rhythm constraints.

(14.8%), This is a remarkable advantage of the proposed
HHSMM that can directly represent both the pitches and
durations (onsets and offsets) of musical notes on symbolic
musical scores, not on continuous-time piano rolls.

Examples of estimated musical scores are illustrated in
Fig. 5. The proposed method yielded the almost accurate
musical score except that some notes were merged. To cor-
rectly recognize two adjacent notes with the same pitch, it
is necessary to refer to original singing voices or music au-
dio signals. The score estimated without considering the
score model, on the other hand, included a lot of wrong
notes that were inconsistent with music theory. This result
also shows the effectiveness of using the score model as
musical constraints on musical note estimation.

5. CONCLUSION

This paper presented a statistical method for musical note
estimation from a vocal F0 trajectory. Our method is based
on an HHSMM that combines a score model (HMM) rep-
resenting the generative process of a musical score from
musical scales with an F0 model (HSMM) representing
the generative process of a vocal F0 trajectory with time-
frequency deviation from the musical score. We confirmed
that the proposed method can yield more musically-natural
sequences of musical notes, which significantly improves
the perceived quality of estimated results.

One of the most interesting directions of this research is
to use the proposed model as a musically-meaningful prior
distribution on a vocal F0 trajectory in vocal F0 estimation
for music audio signals. We plan to integrate the proposed
“language” model that generates an F0 trajectory from a
musical score with an acoustic model that generates a spec-
trogram from the F0 trajectory in a hierarchical Bayesian
manner. This enables us to jointly learn the vocal F0 tra-
jectory and musical score from music audio signals. Joint
estimation of beat times and F0s is worth investigating to
overcome the problem of estimation-error accumulation in
the cascaded estimation approach.
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