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Abstract
In any-to-any singing voice conversion (SVC), singing con-

tent can be encoded using either token-based or embedding-
based approaches. Token-based methods often struggle with ac-
curate content reconstruction, while embedding-based methods
face significant timbre leakage. To address this trade-off, we
propose a novel self-supervised learning (SSL)-based content
representation method. By randomly selecting a subset of chan-
nels during training to serve as the new embedding and fixing
them for subsequent SVC training, our approach achieves supe-
rior content modeling compared to token-based methods while
mitigating timbre leakage typically observed in embedding-
based approaches. We validate the effectiveness and general-
izability of our method across SSL-based embeddings, SSL-
based soft embeddings, and ContentVec.
Index Terms: Singing Voice Conversion, Zero-Shot, Content
Representation, Cross Language Domain

1. Introduction
Any-to-any zero-shot singing voice conversion (SVC) aims
to transform a singer’s timbre to match that of any target
singer while retaining the original melody and pitch. Typically,
an SVC system is trained to reconstruct the original singing
voice using disentangled content, pitch, and timbre represen-
tations [1–5]. During inference, the pitch is adjusted to fit the
target singer’s range, and the timbre representation is replaced
with that of the target singer. A key challenge in SVC lies in
effectively decoupling timbre information from the content rep-
resentation. As shown in Figure 1, excessive timbre informa-
tion in the content representation can cause the model to rely on
content embeddings for timbre information instead of the singer
condition, resulting in timbre leakage during inference.

Broadly speaking, there are two approaches to addressing
this issue. One strategy involves optimizing the model to en-
sure that it learns timbre information exclusively from the singer
condition [6,7]. The other, which is the focus of this paper, aims
to reduce timbre leakage by directly minimizing the singer-
related information in the content representation without modi-
fying the model architecture.

Research has shown that discrete content representations
are effective in removing timbre information from content em-
beddings [4, 8]. For any-to-any SVC, employing a large code-
book for discretized tokens has been shown to preserve fine-
grained singing content, such as articulation nuances, while
eliminating singer-related information [3, 9]. This technique
demonstrates strong potential in achieving accurate timbre con-
version and expressive singing reconstruction.

However, our experiments reveal that this method fails to
accurately reconstruct content for languages or accents not in-
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Figure 1: How timbre leakage happens in SVC

cluded in the training data. Even with expanded codebooks con-
taining thousands of tokens, the limited representation space re-
sults in distortions in unseen pronunciations, which are often
replaced with similar ones from the training data [10, 11]. In
contrast, non-discretized embeddings with continuous content
encoding spaces do not suffer from these distortions [12, 13].
To disentangle timbre from continuous embeddings, some stud-
ies [14, 15] employ supervised learning methods, but these ap-
proaches still exhibit significant timbre leakage.

To address this, we investigate whether timbre information
can be explicitly reduced in continuous embeddings. Assuming
that timbre and content information are uniformly distributed
across the embedding space, simple dimensionality reduction
can proportionally reduce both types of information. While
this raises concerns about whether the reduced content infor-
mation can still support accurate singing reconstruction, prior
studies on discrete representations suggest that even highly lim-
ited spaces can reliably reconstruct singing content within the
training domain [4,8]. We hypothesize that within a reasonable
range of dimensionality reduction, timbre-related information
can be significantly reduced while preserving sufficient content
information for accurate reconstruction. This enables the model
to rely on singer embeddings for timbre information, thereby
enhancing SVC performance.

In this study, we compare various methods, including orig-
inal continuous embeddings, ContentVEC [15], SSL-Soft [13]
embeddings, discretized tokens, and our proposed dimension-
reduction content encoder, all integrated within a modified base-
line model based on So-VITS-SVC 1. Our results show that by
randomly selecting a subset of embedding dimensions and fix-
ing them during training, we can achieve timbre leakage reduc-

1https://github.com/svc-develop-team/
so-vits-svc
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Figure 2: Overview of our proposed content encoder and the experiment baseline system. To facilitate the comparison of different
content encoders, we designed our baseline based on the widely used SVC open-source model, So-VITS-SVC.

tion on par with token-based methods while improving content
reconstruction. To evaluate this, we design an evaluation task
where the SVC system is trained on a single-language dataset
and tested on a multilingual dataset.

In summary, this paper makes the following key contribu-
tions:
• We demonstrate that using token-based methods for SVC

leads to unnatural pronunciation, especially for languages
outside the training set.

• We show that applying random dimensionality reduction to
SSL embeddings and fixing the selected dimensions during
training significantly mitigates timbre leakage while main-
taining content reconstruction accuracy.

• We introduce a novel evaluation task in which SVC models
are trained on a single-language dataset and tested on a mul-
tilingual dataset to assess content reconstruction quality.

• We apply dimensionality reduction to ContentVEC, achiev-
ing singer similarity on par with token-based systems while
improving content reconstruction accuracy. Audio samples
are available at our Demo Page 2.

2. Method
2.1. SVC Baseline

To comprehensively evaluate the performance of various
embeddings in the SVC task, we adopted a widely used
open-source model, So-VITS-SVC, as the baseline. The model
comprises three modules: the wave encoder, the acoustic
model, and the VAE.

Wave Encoder: The primary function of the Wave Encoder is
to encode the source singing. First, the pitch information F0
is converted into an embedding, which is then combined with
the content embedding c extracted by the content encoder. This
combined embedding is processed through an attention mech-
anism to generate mean and variance vectors for constructing
the prior distribution. By experimenting with different content
encoders in the Wave Encoder, we aim to maintain content
reconstruction accuracy while preventing timbre leakage.

Acoustic Model: We utilize generative flow (Glow) G as the
acoustic model [16]. Its fundamental architecture consists of a
stack of affine coupling layers, which are built from a series of

2Demo Page: https://expdemos.github.io/
Mono2PolySVC/

WaveNet [17] residual blocks. During training, the model maps
the posterior distribution q(z), conditioned on the singer s, to
the prior distribution p(ẑ) using G−1, while KL divergence be
used as the loss function. During inference, Glow G uses the
prior distribution p(ẑ), conditioned on the singer s, to generate
a predicted distribution q(z∗).

VAE: We use a Variational Autoencoder (VAE) [18] for encod-
ing and decoding singing. The process begins by converting
the singing from waveform to spectrogram. The posterior
encoder (the VAE’s encoder) produces the mean and variance,
which are used to sample the posterior distribution q(z) from
a Gaussian distribution. This sampled distribution q(z) is then
used to train the acoustic model. HiFiGAN [19] with NSF [20]
is employed as the decoder to reconstruct waveform from q(z).
The decoder is trained using reconstruction loss, adversarial
loss, and feature mapping loss, in conjunction with the acoustic
model, wave encoder, and posterior encoder.

2.2. Proposed Content Encoder

In Figure 3, our idea can be intuitively illustrated using a three-
dimensional sphere. By applying basic geometric principles,
it is evident that the amount of information contained in a
three-dimensional embedding space is greater than that in a
dimension-reduced two-dimensional representation space.

Assuming that both timbre and content information are
uniformly distributed within the embedding space, reducing
dimensionality through random selection proportionally de-
creases the amount of both types of information. As Figure 3
shows, compared to the timbre information contained in the
singer representation, the timbre information in the embedding
space is non-negligible, which may lead to potential timbre
leakage. However, after dimensionality reduction, the timbre
information in the two-dimensional representation space be-
comes significantly smaller than that in the singer representa-
tion, effectively mitigating timbre leakage to some extent.

At the same time, we expect the content information re-
tained in the dimension-reduced representation space to be
greater than that in the discrete token representation space,
thereby enabling better content reconstruction.

Specifically, by using the open-source HuBERT
model [22], we extracted 768-dimensional embeddings
SSL-Emb and applied a dimensionality reduction by ran-
domly selecting d dimensions from its original space. This
reduced embedding, SSL-d-Emb, was used as content
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Figure 3: A schematic illustration of our motivation in a simple
three-dimensional space. On the left, the pink sphere represents
the entire sample space of the embedding encoding, while the
red dots indicate the locations of token representations obtained
through the quantizer [21]. The purple region represents the
representation space when only two dimensions (in this case, is
XY plane) are selected. The right side illustrates the amount of
information contained in different representation spaces, where
green denotes the timbre information, and blue represents the
content information.

embeddings c during both the training and inference phases
of the SVC task. We also explored how different values of d
affected the accuracy of content reconstruction and similarity
to the target timbre.

3. Experiments
3.1. Datasets

We employed an internal dataset that encompassed 200 hours
of Chinese singing from a pool of 10,000 non-professional
singers, with each individual contributing roughly one minute
of recorded singing. To evaluate the model’s performance, we
selected sixteen out-of-domain singers as target singers, includ-
ing eight males and eight females. Additionally, twenty songs in
Chinese and twenty songs in other languages (English, Korean,
Vietnamese, Japanese, and Cantonese) sung by different indi-
viduals were selected to act as source samples. A total of 640
paired SVC samples were used for evaluation. The singers in
the training dataset do not appear in the test phase. All record-
ings in the training and evaluating dataset were captured with a
sampling rate of 44.1 kHz.

3.2. Experiment Details

We trained the SVC baseline using different content en-
coders—SSL embeddings, clustered tokens, ContentVEC,
SSL-Soft embeddings, dimension-reduced SSL embeddings
(SSL-d-Emb), dimension-reduced SSL-Soft 3 embeddings
(SSL-Soft-d-Emb), and dimension-reduced ContentVEC
(ContentV EC-d-Emb)—on the same training dataset to en-
sure a fair comparison of model performance. Among them,
The ’clustered tokens’ encoder refers to tokens derived from
a pre-trained K-means clustering model with 10, 000 clusters,
trained on the same dataset used for training the SVC models.
The remaining model inputs were standardized, including pitch
F0 and singer embedding s, as detailed in Section 2.1.

We employ RMVPE [23] to extract pitch information F0,

3https://github.com/bshall/soft-vc

which is then converted to Log-F0 and fed into a trainable em-
bedding layer. During inference, we adjust the source singer’s
pitch to match the target singer’s vocal range. Specifically, we
first compute the mean F0 values for both the source and target
singers, denoted as mean(F0src) and mean(F0tgt), respectively.
The pitch of the source singer is then adjusted by scaling it ac-
cording to the ratio of these mean values, producing the modi-
fied pitch F0tgt

src, as illustrated in Equation 1:

F0tgt
src = F0src ×

mean(F0tgt)

mean(F0src)
(1)

We directly use pre-trained Speaker Verification model
Resnet34 4 [24] implemented by WeSpeaker to extract a singer
embedding s.

All models were trained with the AdamW [25] optimizer
on eight A100 GPUs, using a mini-batch size of 80 for 100, 000
steps. During training, we applied a learning rate warm-up strat-
egy for the first epoch. The maximum learning rate was set to
1× 10−5, and was reduced by weight decay of 1× 10−3 each
epoch.

3.3. Evaluation Metrics

Objective Metrics: We employ two types of objective metrics
to assess the performance of the SVC models. We use Singer
Similarity (SSIM) to evaluate the effectiveness of voice
conversion. This is done by extracting speaker embeddings
through a speaker verification (SV) model and computing the
cosine similarity between these embeddings. For this purpose,
we utilized two SV models: Wespeaker ResNet34 [26],
which was used during the training phase of our model, and
CAM++ 5, which was trained on both Chinese and English data.

Subjective Metrics: For testing on each content encoder, we
selected 20 samples for subjective evaluation and invited 25
evaluators to assess them. The evaluation focused on two as-
pects: (1) Content Mean Opinion Score (CMOS 1-bad, 2-poor,
3-fair, 4-good, 5-excellen t), which measured the accuracy and
naturalness of pronunciation referred to the source singing; and
(2) a 5-point Similarity Mean Opinion Score (SMOS), which
evaluate how closely the samples resembled the target singer’s
voice.

4. Results
The out-of-domain experimental results for different content en-
coders in the SVC baseline are presented in Table 1. To test the
generalizability of our embedding extraction method, we inde-
pendently chose two sets of low-dimensional representations for
the d-dimensional reduction experiment: SSL−d−Emb1 and
SSL− d− Emb2.

Initially, we evaluated the performance of the SSL-Token-
based SVC system in both Chinese and other languages. Al-
though the SVC model trained in Chinese showed impressive
voice conversion abilities across various languages in terms
of singer similarity, its effectiveness in accurately reconstruct-
ing content was not satisfactory. The case study on the demo
page highlights that some pronunciations differ from the orig-
inal singing, resulting in less clear articulation. This problem

4https://wespeaker-1256283475.cos.
ap-shanghai.myqcloud.com/models/voxceleb/
voxceleb_resnet34.zip

5https://www.modelscope.cn/models/iic/speech_
campplus_sv_zh_en_16k-common_advanced
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Table 1: Objective and subjective evaluation results of various content encoder-based SVC systems. Where dim indicates the channel
dimensions of content representation. SSIMwspk refers to singer similarity calculated using WeSpeaker, while SSIMCAM++ inferred
as singer similarity calculated by CAM++.

Chinese

Content Encoder Type
Objective Metrics Subjective Metrics

dim SSIMwspk↑ SSIMCAM++↑ CMOS↑ SMOS↑

SSL-Token 768 0.850 0.735 4.086± 0.132 4.122± 0.120
SSL-Emb 768 0.752 0.521 4.366± 0.108 2.750± 0.067
SSL-Soft-Emb 256 0.785 0.582 4.298± 0.112 3.262± 0.103
ContentVEC-Emb 768 0.815 0.656 4.284± 0.112 3.752± 0.125
SSL-256-Emb1 256 0.813 0.642 4.184± 0.108 3.686± 0.122
SSL-256-Emb2 256 0.822 0.664 4.258± 0.120 3.738± 0.127
SSL-128-Emb1 128 0.837 0.681 4.244± 0.101 3.920± 0.124
SSL-128-Emb2 128 0.839 0.695 4.162± 0.113 3.908± 0.125
SSL-Soft-128-Emb 128 0.801 0.629 4.280± 0.133 3.472± 0.112
ContentVEC-256-Emb 256 0.842 0.717 4.224± 0.097 4.034± 0.121

Other Langauges

Content Encoder Type
Objective Metrics Subjective Metrics

dim SSIMwspk↑ SSIMCAM++↑ CMOS↑ SMOS↑

SSL-Token 768 0.837 0.641 3.210± 0.148 4.006± 0.117
SSL-Emb 768 0.755 0.462 4.326± 0.121 2.494± 0.070
SSL-Soft-Emb 256 0.774 0.484 4.266± 0.123 3.154± 0.091
ContentVEC-Emb 768 0.799 0.554 4.250± 0.135 3.512± 0.126
SSL-256-Emb1 256 0.805 0.544 4.186± 0.134 3.532± 0.120
SSL-256-Emb2 256 0.814 0.560 4.204± 0.129 3.570± 0.128
SSL-128-Emb1 128 0.821 0.591 4.220± 0.120 3.726± 0.116
SSL-128-Emb2 128 0.821 0.588 4.178± 0.131 3.700± 0.121
SSL-Soft-128-Emb 128 0.799 0.549 4.230± 0.130 3.476± 0.116
ContentVEC-256-Emb 256 0.835 0.634 4.256± 0.125 4.038± 0.128

arises from the overly compressed information by discrete to-
kens, causing inaccuracies in content reconstruction for lan-
guages not included in the training set. These insights highlight
the significance of this study.

Both the objective metric SSIM and the subjective metric
SMOS indicate that as the number of selected dimensions d de-
creases, the similarity between the SVC samples and the target
timbre increases. The subjective metric CMOS shows that re-
ducing the number of dimensions d does not significantly affect
content reconstruction accuracy, demonstrating the feasibility
of our proposed method.

Moreover, SSL-256-Emb surpasses the more complexly
trained SSL-Soft-Emb, despite having the same number of
representation dimensions, illustrating that our system is not
only simpler but also more effective. Notably, SSL-128-Emb
even outperforms the previous state-of-the-art ContentVEC,
highlighting that our straightforward random dimension selec-
tion approach can achieve better timbre similarity compared
to methods relying on more complex supervised training pro-
cesses.

Furthermore, our dimension reduction method outperforms
each baseline embedding when applied to all three types (SSL-
Emb, SSL-Soft-Emb, ContentVEC), demonstrating strong gen-
eralization capability. When we applied our proposed dimen-
sionality reduction method directly to ContentVEC, by ran-
domly selecting 256 dimensions from the 768-dimensional
ContentVEC embeddings to use as content embeddings, the re-
sulting SVC model achieved comparable similarity metrics to

those based on SSL-Token, while significantly improving con-
tent reconstruction accuracy. Based on these findings, we pro-
pose the Mono2PolySVC model, which allows for training in
a single language and inference across multiple languages. We
used colored bars in the table to highlight the improvements of
this new model over token-based SVC.

5. Conclusion
We introduce a straightforward yet innovative SVC content en-
coding strategy that effectively reduces timbre leakage by ran-
domly selecting d dimensions from the original content embed-
ding to create a lower-dimensional representation. The result
indicates that decreasing the number of selected dimensions
enhances control over timbre leakage without sacrificing con-
tent reconstruction accuracy. This method’s versatility is fur-
ther confirmed by its successful application across three differ-
ent types of embeddings. When integrated with ContentVEC,
our approach enables an SVC model to achieve singing voice
conversion performance comparable to token-based methods in
terms of singer similarity, while surpassing them in content re-
construction. To further demonstrate its effectiveness, we con-
ducted experiments where the model was trained on a single-
language dataset and evaluated on a multilingual dataset, show-
casing its robust performance across different linguistic con-
texts.
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