
al. [9], for example, estimated the positions of two asyn-
chronous microphones by emitting specially designed sound
signals from the loudspeakers near microphones. Pertila et
al. [10] developed a method for estimating the positions and
directions of the devices that each have a microphone and a
loudspeaker without using special sound signals.

Another approach is to use only multi-channel audio
signals asynchronously recorded by multiple microphones
[5]–[7]. Hasegawa et al. [5], for example, proposed an
offline method that estimates the positions and time offsets
of microphones such that the mean square errors between
observed and predicted TDOAs are minimized. In a standard
setting of SLAM, mobile robots (microphone arrays) are
used for localizing themselves and multiple stationary objects
(sources). If multiple moving sound sources are observed
by a single stationary robot, SLAM techniques can be used
by reversing the roles of sources and robots. Su et al. [7]
proposed an offline method that estimates the clock differ-
ences and time offsets between microphones, the position
of a sound source, and those of the microphones. using a
graph-based SLAM method. Miura et al. [6] proposed an
online method that uses extended Kalman filter-based SLAM
(EKF-SLAM) and delay-and-sum beamforming (DSBF) for
judging the convergence of calibration by comparing the
sound source positions estimated by EKF-SLAM and DSBF.

III. PROPOSED METHOD

This section describes an online method that estimates the
time offset and position of each robot (microphone array) and
the positions of sound sources when multiple sound sources
exist. First, the time differences of arrival (TDOAs) and
directions of arrival (DOAs) of sound sources are estimated.
Those TDOAs and DOAs are used as observed data for a
state-space model that encodes the time offset and position
of each robot and the positions of sound sources as latent
variables, which are estimated jointly in an online manner
using a FastSLAM2.0 algorithm.

A. Problem Specification

We specify a problem of audio-based online SLAM for
multiple robots and sound sources. Let M be the number
of microphones on a single robot, I the number of robots,
N the number of total sound sources, and F the number
of frequency bins. In this paper, we assume that the robots
and sound sources are on a two-dimensional plane. The
estimation problem is defined as follows:

• Input: I ×M channel input audio spectrogram x t =
[x t1, · · · , x t,I ].

• Output: (1) The two-dimensional positions and direc-
tions r i of microphone array i (i = 1, . . . , I).
(2) The two-dimensional positions sk,n of sound source
n at the k-th measurement (n = 1, . . . , N ).
(3) The time offset τ1j between microphone array 1 and
j.

• Assumptions:
(1) At least one sound source is moving.
(2) The robots are stationary.

(3) Multiple microphone arrays are roughly synchro-
nized (within about 10 ms). This is achieved by using
a wireless connection of the robots and without using a
special sound capturing system.

Here, x ti = [x ti 1, . . . , x tiM ]T ∈ CM ×F denotes the
spectrogram recorded by the microphone array i at the t-th
time frame. r i = [rx

i , r
y
i , r

θ
i ] is a vector of two-dimensional

position and direction of microphone array i. sx
k,n and sy

k,n

denote the two-dimensional position of sound source n at
the k-th observation.

B. Feature Extraction

The robot and sound source positions are estimated by
using DOAs and TDOAs. If only DOAs are used to estimate
positions, just the positions which are similar to the actual
positions are estimated. DOAs and TDOAs enable robots to
estimate the time offsets and the two-dimensional positions
with the origin located at one of the robots.

1) DOA Estimation: The DOA of a sound source from
each robot can be estimated by a microphone array pro-
cessing method called multiple signal classification (MU-
SIC) [13]. To use MUSIC, which requires synchronized
microphones, each robot is equipped with a synchronized
microphone array. MUSIC can estimate DOAs even if the
observed signals are mixtures of multiple sound sources,
although we need to specify the number of sound sources
beforehand. DOA estimation does not necessarily fail if the
actual number of sound sources is not what we expected, but
its accuracy may deteriorate.

2) TDOA Estimation: TDOAs are estimated only when
sound sources are detected at the DOA estimation. If there
is only one sound source, TDOA is estimated as follows.
The cross-correlation coefficients are calculated by using a
generalized cross-correlation with phase transform (GCC-
PHAT) [14]. The coefficient GP HAT of the GCC-PHAT
between the microphone m1 and m2 is calculated as follows:

GP HAT (f) =
Xm 1(f)X

∗
m 2

(f)

|Xm 1(f)X
∗
m 2

(f)|
, (1)

where Xm (f) is the Fourier transform of the signal recorded
by the microphone m. To estimate the TDOA between the
robot i1 and i2, the coefficients of GCC-PHAT between the
first microphone of the robot i1 and the first microphone
of the robot i2 is calculated. This coefficient is transformed
into the time domain signals, and the peaks of this time-
domain signals correspond to the TDOA; therefore, TDOA
ξ is calculated as follows:

ξ = argmaxξ

∫
GP HAT (f)ej 2πfξdf. (2)

When there are multiple sound sources, the TDOA of each
must be estimated. This can not be done using above method,
because even if the cross correlation coefficients have the
same number of peaks as the sound sources, it is impossible
to estimate which peaks correspond to which sound sources.

This problem is solved by using sound source separation.
Fig. 2 shows the outline of the TDOA estimation from the
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calculated as follows. First, the position of each sound source
are classified by using a K-means algorithm based on the
direction of the sound source from a centroid of the robot
positions. The parameter K is calculated by rounding out the
weighted average of the number of sound sources of each
particle. Second, with regard to each class, the estimation
result is calculated as the weighted mean of each sound
source classified into the class.

IV. EXPERIMENTAL EVALUATION

This section reports experimental results of the proposed
method by using three robots and two sound sources.

A. Experimental Conditions

This experiment was conducted in an anechoic chamber in
which there were two sound sources and three robots (Fig.
4). Each of the robots had an eight-channel microphone array
whose layout is shown in Fig. 6. The following three patterns
of the movements of sound sources were tested (Fig. 5).
1) Pattern 1: One sound source was stationary and the other

moved along a circular route. The recording time was 40
seconds.

2) Pattern 2: Same as the Pattern 1 except that the route
of the moving source was changed to a square and the
stationary sound source was put 0.5 m away from the
position in Pattern 1. The recording time was 45 seconds.

3) Pattern 3: Both sound sources moved along the same
circular route with different start points. The recording
time was 55 seconds.

At the points indicated by the square marks, sources emitted
sounds almost simultaneously. To get the correct time offsets
we conducted synchronous recording by using a multi-
channel A/D converter (RASP-24 manufactured by Systems
In Frontier Corp) with a sampling rate of 16 kHz and a
quantization of 16 bits. We then intentionally shifted the
signals recorded by robots 2 and 3 by 10 ms and -5 ms,
respectively.

The configuration of the FastSLAM was that the number
of particles was 50000, the initial states of each particle
was generated randomly, the standard deviation of DOA
and TDOA measurements were 5◦ and 0.1 ms respec-
tively, and other parameters were determined experimentally.
The sound source separation was conducted online by the
geometric high-order dicorrelation-based source separation
(GHDSS) method [16]. The open-source robot-audition soft-
ware HARK [17] was used for conducting the MUSIC and
GHDSS. The states were updated only when we got DOAs
different from the DOAs observed within the previous two
seconds.

We evaluated the estimation error of the robot positions,
robot angles, time offsets, and sound positions. Since we
didn’t know the correspondence relations between the esti-
mated and actual sound sources, the estimation error of a
sound source was defined as the distance between the actual
sound position and the estimated sound position closest to
the actual one. The estimated number of the sound sources
was not always the same as the actual number, and if it
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Fig. 7. Estimation errors of the robot positions, the robot angles, and the
time offsets.

was smaller than the actual number, we didn’t calculate the
estimation error of sound sources that had no corresponding
estimated sound source.

B. Experimental Results

Fig. 7 shows the estimation error of the robot positions,
the robot directions, and the time offsets. In all the patterns
they were estimated with high accuracy, and, after the last
measurement, the mean errors of the robot positions, the
robot directions, and the time offsets were less than 0.05
m, 10 degree, and 0.2 ms, respectively. Since the sampling
rate of the recording was 16 kHz, 0.2 ms of the time offset
estimation error was equivalent to 3.2 samples. This value is
so small that it does not matter in the adaptive sound source
separation methods [17].

Fig. 8 shows the estimation error of the sound source
positions and the estimated number of sound sources. The
estimated number of sound sources is the weighted mean
of each particle. In the first pattern the final estimation
errors of the both sound sources were less than 15 cm
and the estimated number of the sound sources was almost
always 2 except at the second measurement. In the second
pattern, the estimated sound source directions were almost
correct, although the accuracy of the estimated sound source
positions was low and the estimated number of sound sources
were often more than 2.

The reason why the estimated number of sources often
became more than 2 is due to the estimation error of the cor-
respondence relations. When the performance of source sepa-
ration is low, the cross correlation between the source signals
from the different sources also becomes high, and the corre-
spondence relations would be mistakenly decided. Then, at
the decision step of the data association in FastSLAM 2.0 al-
gorithm, the likelihood p(� k , � k |ŝ[m ]

k , r [m ]
k−1, �

[m ]
k−1, c

[m ]
k ) be-

comes small, and a pseudo sound source is created.
One reason why the estimation of sound source positions

1977



Fig. 8. Estimation errors of the sound source positions and the estimated
number of sound sources.

Fig. 9. Estimation errors of the sound source directions viewed from the
centroid of the robot positions.

failed in some cases is that the distance between a robot
and a sound source is relatively long compared to the
distances between the robots. Although the direction of the
estimated sound source is almost correct, a slight error of
the DOA estimation results in a large estimation error. Fig. 9
shows the estimation errors of the sound source directions.
These directions mean those of the sources measured on
the centroid of the robot positions. These results show that
the estimation errors of the source directions were almost
less than 20 deg. Fig. 10 shows the sound source positions
of each particle and the estimation results after the 14th
measurement. We also see that the particles were distributed
on the correct sound source directions although the estimated
position was not correct. In this case, even if we increase the
number of particles, the estimation error would not become
small.

One way to improve the proposed method is to make
the robots move around the sound sources. By using the
robot movements, we can correct the sound source positions
with the different relative directions of the sound sources.
This approach has been studied in the context of active
audition [18]–[20]. These studies will be effective for our
extension.

V. CONCLUSION

This paper presented a method that in an environment
with multiple sound sources conducts audio-based SLAM
and synchronizes multiple microphone arrays simultaneously
by using multiple robots that each have a microphone array.

Fig. 10. The experimental result in the Pattern 2 after the 14-th measure-
ment. Yellow triangles, red squares, and blue squares indicate the sound
source positions of each particle, the weighted mean of the yellow triangles,
and the correct sound source positions, respectively.

Conventional methods using asynchronous microphones as-
sume that only one sound source is active at each time. In our
method, taking advantage of using microphone arrays, we
conduct sound source separation to estimate TDOAs from
observed mixture signals and estimate DOAs by using a
microphone array processing technique. We integrate esti-
mated TDOAs and DOAs by using a state-space model, and
we estimate the positions of sound sources and robots, the
robot directions, and the time offsets between the microphone
arrays by using a FastSLAM algorithm. We conducted an
experiment to evaluate the estimation accuracy of the pro-
posed method in anechoic chamber. In all three patterns, the
estimation error of the robot positions, the robot directions,
and the time offsets after the last measurement were less
than 5 cm, 10 degree, and 0.2 ms, respectively. Although the
estimation of the sound source position was difficult in some
cases, the estimation error of the sound source positions after
the last measurement was less than 20 cm in one pattern.

We plan to extend our method so that the robot can move.
In the current method, there is a problem that the estimation
of the sound sources is likely to fail in some cases. Although
the uncertainty of the robots becomes larger when robots are
moving, we can reduce the uncertainty of the sound sources
by moving robots to optimal positions. Moreover, when the
uncertainty of the sound sources is reduced, the uncertainty
of the robots is also expected to be reduced.
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