
 Eurospeech 2001 - Scandinavia

Speaking Rate Dependent Acoustic Modeling
for Spontaneous Lecture Speech Recognition

Hiroaki Nanjo, Kazuomi Kato and Tatsuya Kawahara

School of Informatics, Kyoto University
Sakyo-ku, Kyoto 606-8501, Japan

nanjo@kuis.kyoto-u.ac.jp

Abstract

The paper addresses large vocabulary spontaneous speech
recognition focusing on acoustic modeling that considers the
speaking rate. Using the real lecture speech corpus collected
under the priority research project in Japan, we have made base-
line acoustic model, and evaluated on the automatic transcrip-
tion of oral presentations by experienced speakers and obtained
word accuracy of 58.2%. Compared with read speech, we have
observed significant difference in the speaking rate. To handle
fast and poorly articulated phone segments, several extensions
of the modeling are explored. Specifically, we introduce state-
skipping modeling, speech rate-dependent model, and syllable
sub-word modeling. As a result, we reduced the word error rate
by absolute 0.8%-2.0%. We also address a language modeling
especially on effective use of various large text corpora.

1. Introduction
Under the Science and Technology Agency Priority Program in
Japan (1999-2004)[1], a large scale spontaneous speech corpus
is being collected and we have started extensive studies on large
vocabulary spontaneous speech recognition. Our main target is
automatic transcription of live lectures such as oral presenta-
tions in conferences.

In acoustic modeling of spontaneous speech, the speak-
ing rate, especially fast speech segments, is considered as one
of significant causes of degrading the performance of speech
recognition[2] [3] [4]. The articulation is influenced by speak-
ing fast and this causes poor matching The spectral patterns are
changed a lot, moreover the phone itself may disappear. Thus,
we focus on the modeling of fast speech segments and investi-
gate the speaking rate-dependent model.

2. Database and Test-Set
The lecture speech corpus is being collected under the project
called “The Corpus of Spontaneous Japanese (CSJ)”, and it con-
sists of live recordings of oral presentations in technical con-
ferences and studio recordings of monologue speech on given
topics such as hobbies and travels. Speech data are recorded by
a head-set microphone. As of Oct. 2000, initial portion of them
are available, which are listed in Table 1. The data-set CSJ1
amounts to 195 lectures (35.3h) which do not include studio
recordings to match the training data-set to the the test-set men-
tioned below. On the other hand, the data-set CSJ2 includes all
of them and amounts to 299 lectures (45.3h). They are all given
by male speakers.

The test-set specification is shown in Table 2. The lectures
are live presentations in technical conferences by four males.

Table 1: Corpus of Spontaneous Japan (CSJ) (available Oct.
2000)

Conference (#lectures) amount

AS(102) + SP(11) + NL(45) +
CSJ1 JL(9) + PS(17) + 35.3h

KK(6) + YG(5)

CSJ2 CSJ1 + �IG(78)+ �ST(26) 45.3h
�: studio recording monologue

Table 2: Test-Set
lecture spec. rate of fillers

time #words interjections repairs

AS99SEP022 28min 6305 9.0% 2.9%
AS99SEP023 30min 4391 7.5% 2.2%
AS99SEP097 13min 2508 5.7% 1.1%
PS99SEP025 27min 5372 11.9% 1.2%

All of them are experienced speakers, and gave lectures with-
out any drafts. The symbol such as “AS” and “PS” in Table 2,
indicates the name of a technical conference, for instance “AS”
means Acoustical Society of Japan. We can estimate the speak-
ing rate of each presentation from its duration and the number
of words. Although AS99SEP022 and AS99SEP023 were pre-
sented at the same conference, their speaking rates are quite dif-
ferent. The ratio of fillers also varies according to the individual
speakers. All speech materials are given without segmentation,
thus automatic segmentation is performed based on pause mod-
els.

As for language model, we use a statistical word trigram
model which is trained with the transcriptions of the same cor-
pus (CSJ) and other lecture texts available on World Wide Web.
The vocabulary size is 11k. The decoder is Julius-3.1[5], which
was developed at our laboratory.

3. Baseline Acoustic Model
Acoustic models are based on continuous density Gaussian-
mixture HMM. Speech analysis is performed every 10msec
and 25-dimensional parameter is computed (12MFCC +

12�MFCC +�Power).
The number of phones is 43, and all of them are modeled

with left-to-right HMM of three states (no state-skipping). We
trained context-dependent triphone models. Decision-tree clus-
tering is performed to set up shared-state triphone models of
1000, 2000 and 3000 states, respectively. Each state has 16 mix-
ture components. We also made PTM (phonetic tied-mixture)
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Table 3: Evaluation of several acoustic models (%word accu-
racy)

training set
models CSJ1 CSJ2

monophone 129x32 50.8 50.3
monophone 129x64 52.1 51.6
triphone 1000x16 58.2 58.0
triphone 2000x16 58.2 57.7
triphone 3000x16 56.5 56.4

PTM 129x64 (s1000) 57.8 57.9
PTM 129x64 (s2000) 58.4 58.0
PTM 129x64 (s3000) 58.1 57.4

model[6], where tripohnes of the same phone share Gaussians
but have different weights. PTM is usually modeled with a
larger number of Gaussians per state, but the total number of
Gaussians is mush smaller than conventional shared-state tri-
phone models. Here, 129 codebooks of 64 mixture components
are used.

3.1. Evaluation of Baseline Models

Evaluation of baseline acoustic models on the test-set is sum-
marized in Table 3. We got word accuracy of about 58% by
both triphone and PTM models.

When we compare the training set of CSJ1 and CSJ2, no
significant difference was observed by the addition of data. The
fact suggests that there is little effect of adding studio recording
data, which were quite different from live presentations. In fact,
in the studio recording, as reported in [7], speakers were more
relaxed and spoke more casually and slowly.

The performance of the triphone model of 3000 states is
degraded, because it is not fully trained with the given training
data size. Thus, we use the triphone 2000x16 as the baseline in
the following section.

The overall accuracy was quite poor, compared with the
newspaper corpus task (20k vocabulary), where we adopted the
same modeling with the comparable size of training speech data
and achieved accuracy of 90-95%[8].

4. Speaking Rate-Dependent Modeling
4.1. Motivation

The speaking rate is considered to significantly affect the per-
formance of speech recognition[3] [4]. In [3], speaking rate-
dependent phone models are prepared for fast, normal and slow
phone segments. In [4], they introduced speaking rate informa-
tion in decision-tree clustering.

We first investigate the duration distributions of phone
segments in live presentations (CSJ1: 35h) and read speech
(Japanese Newspaper Article Sentences corpus: 40h) in Fig. 1.
It is obvious that the distributions are quite different and the
live lectures are spoken faster than the read speech. In particu-
lar, there are a lot of phone segments that have duration of three
frames (30msec) in CSJ. Since each phone segment is modeled
with three state HMM without state-skipping, minimum dura-
tion of Viterbi aligned phone segments is three frames. These
segments may have fewer durations, but are forcedly assigned
to three frames. This causes a significant problem because the
correct acoustic score is not evaluated. Moreover, spectral pat-
terns are changed in the segments because of fast articulation.
In order to solve this problem, we modify the HMM structure
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Figure 1: Duration distributions of read and lecture speech

Table 4: Effect of state-skipping transitions (%word accuracy)
state-skipping baseline

AS99SEP022 57.6% 56.5%
AS99SEP023 61.9% 59.2%
AS99SEP097 70.3% 67.3%
PS99SEP025 59.1% 57.1%

average 60.7% 58.7%
triphone (s2000x16mix)

so that the speaking rate is taken into account. Specifically, we
present the following three methods.

� add state-skipping transitions.
� make new HMM with one or two states for typical tri-

phones that are articulated fast.
� set up syllable models that are frequently articulated fast

instead of phones.

Details are described in the following sections.

4.2. State-Skipping Transitions

As the simplest modification to cope with the fast speech,
we add a transition arc from the first state to the third state.
Gaussian distributions and state transition probabilities are re-
estimated.

Table 4 lists word accuracy of this model compared
with the baseline. Both of them are modeled with triphone
(s2000x16mix)1 . The state-skipping transition has good effect
on the short phone segments, and we reduced word error rate by
2% absolutely.

4.3. Speaking Rate-Dependent Phone Model

The model of the previous section does not model changes of
spectral patterns caused by fast articulation. Therefore, we in-
troduce speaking-rate dependent phone modeling that have ded-
icated models for normal speech and fast speech

To handle fast segments shorter than three frames, we pre-
pare one state or two state model for fast phones. Phone seg-
ments are labeled with normal/fast based on the duration ac-
cording to Viterbi algorithm. There is a tendency that some
phones are more likely to be articulated fast. We select such

1Changing decoding parameters, baseline word accuracy is different
from that of Table 3.
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Table 5: phone level speaking rate-dependent model (%word
accuracy)

rate-ph1 rate-ph2 baseline

AS99SEP022 54.8% 53.3% 56.5%
AS99SEP023 60.0% 59.9% 59.2%
AS99SEP097 67.6% 66.9% 67.3%
PS99SEP025 57.9% 54.9% 57.1%

average 58.6% 57.1% 58.7%
rate-ph1:1state-HMM, rate-ph2:2states-HMM
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Figure 2: Duration distribution with speaking-rate dependent
model

phones (triphone contexts) that have enough training data for
both normal and fast HMM. The number of selected triphones
is 154. Many of these triphones are concerned with functional
words and auxiliary verbs that may not be clearly articulated,
for example “-Nde” and “-desu”. By assuming that the changes
of the speaking rate occur at word boundaries, we prepare both
normal and fast baseform for each word in the lexicon if it
contains the selected 154 triphones. For example, the word
“DESUGA” that is transcribed as /d e s u g a/ for a normal base-
form and contains the selected triphone /d+e/,/d-e+s/,/e-s+u/,/s-
u+g/,/u-g+a/ is transcribed as /d f e f s f u f g f a/ for a fast
baseform.

We trained triphone models (s2000x16mix) and evaluated
with the test-set. The results are shown in Table 5. No im-
provement was observed. The case using one-state model for
the fast segments has better performance than that using two-
state model. The one-state model achieved comparable perfor-
mance to the baseline. The decrese is caused by the shortage of
training data, because the modeling demands different sets for
fast and normal segments.

We investigated the distribution of phone segments with the
baseline and one-state models and plot it in Fig. 2. Fast models
are obviously used and there are a lot of segments of only one
frame, which may be actually missing. In [3], they introduced
the zero-length-phone model for such segments.

4.4. Speaking Rate-Dependent Syllable Model

Since not a few phone segments may disappear, we modeled
them with syllables of phone sequence as illustrated in Fig. 3.
In Japanese, every syllable is made up of a consonant followed
by a vowel. We select syllables considering both training data
amount and the speaking rate. The following statistic is defined

phone model /s/ phone model /u/

syllable model /su/

Figure 3: Speaking Rate-Dependent Syllable Model

Table 6: syllable level speaking rate-dependent model (%word
accuracy)

rate-syl baseline

AS99SEP022 55.7% 56.5%
AS99SEP023 61.4% 59.2%
AS99SEP097 69.6% 67.3%
PS99SEP025 58.0% 57.1%

average 59.5% 58.7%

as a criterion for selection.

Vs =
X

i

P
Duration(si)

where si is a sample i of syllable s, P is an average probability of
self-looping transition (= 0:56) andDuration(si) is a number
of frames with which si is aligned. The more fast segments
occur, the value of Vs gets larger.

We selected 30 syllables based on the criterion. They are all
concerned with functional words. We modeled these syllables
with three state HMM and evaluated with the test-set. The result
is shown in Table 6. Comparing the results of Table 5 and Table
6, the syllable model is more effective than the phone model for
fast speech segments.

5. Improvement in Language Modeling
5.1. Incorporation of Other Text Corpus

We have also made several improvements in language model-
ing. For training language model of spontaneous speech, it is
necessary to collect a corpus of accurate transcriptions. The
text size is essentially much smaller than written text corpus
such as newspaper articles and broadcast drafts, since recording
and manually transcribing spontaneous speech costs a lot.

Thus, we explore effective use of various text corpora.
Specifically, texts of lecture notes available via World Wide
Web are collected. A topic-independent vocabulary selection
based on mutual information criterion is performed[9]. The text
size amounts to 1692K words in total, which is four times larger
than the CSJ corpus built so far. These texts are not actual tran-
scription of lectures, but manual editing process is performed
for readability. It is not matched for language modeling of spon-
taneous lecture speech recognition.

Therefore, adaptation or weighted combination of text cor-
pora is introduced. Suppose the occurrence count of word se-
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Table 7: coverage and perplexity
CSJ WEB CSJ+WEB

(simple! optimized)

data amount 0.47M 1.7M 2.2M
vocabulary 10K 8K 13K

AS99SEP022 94.5% 141.2 87.0% 210.6 95.1% 159.0! 149.8
AS99SEP023 95.7% 127.3 83.8% 221.8 96.1% 157.3! 146.3
AS99SEP097 95.9% 140.6 85.5% 151.0 96.3% 162.5! 153.7
PS99SEP025 95.7% 193.0 81.9% 320.3 96.1% 253.8! 223.8

Table 8: Effect of corpus combination (word accuracy)
CSJ+WEB

CSJ WEB simple optimized

AS99SEP022 55.5% 51.2% 56.4% 57.9%
AS99SEP023 68.1% 49.0% 66.5% 67.9%
AS99SEP097 67.8% 61.0% 68.6% 70.4%
PS99SEP025 60.3% 45.8% 58.8% 61.4%

average 61.5% 50.4% 61.1% 63.0%

quence W in the matched corpus (=CSJ) is C1(W ) and that
in the un-matched large corpus (=Web) is C0(W ), then these
corpora are combined by the following formula.

�0 � C0(W ) + �1 � C1(W ) (1)

We adopt the weighted combination of word count level,
rather than probability level, because it is more straightforward
in computing back-off coefficients.

5.2. Optimization of Weights with Deleted-Interpolation
Method

Many previous works do not address automatic optimization of
the weight parameters �. In the previous section of evaluation of
acoustic modeling, we use simple concatenation of two text cor-
pora, that means �0 = �1 = 1. Here, estimation of the weights
without using the test-set is done with the deleted-interpolation
method. We split the matched corpus (=CSJ) into M (=7) por-
tions, and estimate parameter �m that minimizes perplexity of
each 1=M portion using the other (M � 1) portions combined
with large corpus (=Web). We repeat this process M times and
calculate an average value , which is set as an estimated weight
parameter �0 and �1.

As a result, we have derived �1=0.93 and �0=0.16.

5.3. Evaluation of Language Model

We compared language models with different training sets in
terms of coverage and perplexity as shown in Table 7. As the
vocabulary sizes are different among models, we cannot com-
pare perplexity values directly. From the result, we verified the
mis-match of Web lecture notes with the actual speech tran-
scription caused by the post-processing process.

The recognition results on the test-set using PTM triphone
model (s2000) are listed in Table 8. 2

A simple concatenation of two text corpora actually gave no
improvement of the performance, but the proposed automatic
optimization method improves both perplexity and the recogni-
tion accuracy. It reduced the error rate by absolute 1.5%.

2As we fixed the lexical entries and modified handling of pauses in
the language model, the baseline word accuracy is improved.

6. Conclusion
We have studied acoustic modeling that considers the speak-
ing rate. We have made baseline acoustic model using the
real lecture speech corpus (CSJ), and evaluated on the auto-
matic transcription of oral presentations by experienced speak-
ers. Comparing spontaneous speech with read speech, signifi-
cant difference in the speaking rate has been observed. Since
fast segments in spontaneous speech are not clearly articulated
and poorly modeled, several extensions of the modeling are ex-
plored. The state-skipping transition is effective. With speaking
rate-dependent phone model, no improvement was observed,
we confirmed that not a few phone segments disappear in fast
segments. So we modeled them with syllables of phone se-
quence, and achieved some improvement. As a result, we re-
duced the word error rate of 0.8%-2.0%.

We also investigated language modeling especially on ef-
fective use of large text corpora. Specifically, weighted com-
bination of Web texts and automatic estimation of the weights
are introduced. The method improves the perplexity and the
recognition accuracy by 1.5%.
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