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Abstract—This paper presents a method of rhythm transcrip-
tion (i.e., automatic recognition of note values in music perfor-
mance signals) based on a Bayesian music language model that
describes the repetitive structure of musical notes. Convention-
ally, music language models for music transcription are trained
with a dataset of musical pieces. Because typical musical pieces
have repetitions consisting of a limited number of note patterns,
better models fitting individual pieces could be obtained by in-
ducing compact grammars. The main challenges are inducing
appropriate grammar for a score that is observed indirectly
through a performance and capturing incomplete repetitions,
which can be represented as repetitions with modifications. We
propose a hierarchical Bayesian model in which the generation
of a language model is described with a Dirichlet process and
the production of musical notes is described with a hierarchical
hidden Markov model (HMM) that incorporates the process of
modifying note patterns. We derive an efficient algorithm based
on Gibbs sampling for simultaneously inferring from a perfor-
mance signal the score and the individual language model behind
it. Evaluations showed that the proposed model outperformed
previously studied HMM-based models.

I. INTRODUCTION

Music transcription is a fundamental problem in music in-
formation processing, requiring the extraction of pitch and
rhythm information from music audio signals. Many studies
on acoustic modelling of musical sounds have been carried out
for extracting pitch information [1,2]. Rhythm transcription (or
quantisation), on the other hand, has been addressed in the aim
of recognising score-written lengths (or note values) of musical
notes [3–8]. Using prior knowledge on music scores is crucial
for music/rhythm transcription, like speech recognition [9],
and machine-learning techniques have been studied in efforts
to construct music ‘language’ models. Hidden Markov models
(HMMs) have been widely used to learn a ‘generic’ language
model with a dataset of musical pieces [5–7, 10, 11].

Since musical pieces typically have repetitive structure con-
sisting of a limited number of note patterns, more accurate lan-
guage models could be obtained by inferring compact gram-
mars fitting individual pieces. Finding repeated patterns in
music is a topic of computational music structure analysis, and
methods based on similarity matrices [12, 13], data compres-
sion [14], or Markov Oracle [15] have been studied. Once the
repetitive structure of a piece is known, note-pattern models
[6,8] could be used to learn the piece’s grammar. Conversely, if
used note patterns are given, we could infer the repetitive struc-
ture more accurately. To solve this chicken-and-egg problem,
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Fig. 1. Overview of the proposed model describing the generating process of
music score with incomplete repetitions and the process of music performance.

we need a framework for simultaneously inducing grammar
and analysing music data.

This inter-relation between grammar induction and data anal-
ysis has been gathering attention in the field of natural lan-
guage processing (NLP), and Bayesian methods have been
extensively developed [16, 17]. A method for simultaneously
learning word vocabulary and segmenting sentences into words
[18] is analogous to our problem (characters vs. notes and
words vs. note patterns). Recent studies have focused on the
problem of modification to repeated patterns (words) [19,20].
Modelling modification is necessary to identify incomplete
repetitions, which are common in music [21].

In this paper, we propose a hierarchical Bayesian model for
simultaneously inferring from a performance signal the score
and the individual language model behind it (Fig. 1). (a) First a
language model based on a hierarchical HMM of note patterns
is generated, then (b) musical notes in the score are generated
by the language model, and finally (c) a performance signal
is generated based on the score. Compact grammar models
are represented as outputs of a Dirichlet process [22] with
a small concentration parameter. Incomplete repetitions are
represented as repetitions with modifications and described
with a probabilistic model for modification of note patterns.
The process of music performance is described with a tempo
fluctuation model used in studies on score-performance match-
ing [23,24]. In this study we focus on the rhythmic aspect and
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confine ourselves to monophonic music.
The main contribution of this study is its treatment of in-

complete repetitions of note patterns. Bayesian grammar in-
duction for music has been addressed in previous studies us-
ing probabilistic context-free grammar (PCFG) models using
note patterns without modification [8] or note-wise produc-
tions without note patterns [25, 26]. The problem of simul-
taneously inducing grammar and segmenting text data with
modification has not been addressed in NLP. We evaluated
the model by comparing its accuracy of rhythm transcription
with that of previously studied HMM-based models.

II. RELATED WORK

Previously studied statistical music language models for
rhythm/music transcription are reviewed in this section (Fig. 2).
The output of a language model is a sequence of notes x1:N =
x1 · · ·xN where N denotes the number of notes. (Similar
notations will be used throughout this paper.) Since we are
focusing on the rhythmic aspect, xn represents the note value
of the n-th note. The note value is defined as the score-written
note length relative to a whole note (a quarter note has an
x = 1/4, a dotted half note has an x = 3/4, etc.).

A. Note-Level Markov Model

Markov models of musical notes have been proposed in
early studies [6]. In the first-order model the probability of
x1:N is given as a product of transition probabilities:

P (x1:N ) =
N∏

n=1

P (xn|xn−1), (1)

where, with an abuse of notation, P (x1|x0) ≡ P (x1) signifies
the initial probability. We can extend it to a p-th-order model
by replacing P (xn|xn−1) with P (xn|xn−1, . . . , xn−p+1).

A problem with this note-level model is that certain logical
constraints on the sequence of note values cannot be incorpo-
rated in the model. For example, triplet notes must appear in
triplets or in pairs with a double triplet note. This constraint
cannot be described with a note-level Markov model of any
order. Nor can metrical structure be incorporated in the model.

B. Note-Pattern Model

In most music, including classical and popular music, mu-
sical notes have metrical structure, and note-pattern models
incorporating metrical structure have been proposed in previ-
ous studies [6,8]. In the note-pattern Markov model [6], note
patterns with a fixed time span (e.g., a bar) are considered as
the state space. We notate a note pattern (a string of notes)
with Bk = zk,1 · · · zk,L (k = 1, . . . ,K), where k indexes the
set of K note patterns and zk,` (` = 1, . . . , L) denotes the
`-th note in note pattern k. The probability of the sequence of
patterns w1 · · ·wI (wi ∈ {Bk}Kk=1) is given as a product of
transition probabilities πkk′ = P (wi = Bk′ |wi−1 = Bk) and
an initial probability π0

k = P (w1 = Bk).
The sequence of notes, denoted by z1:M , is obtained by

concatenating the generated note patterns w1:I , and its prob-
ability is described with a hierarchical Markov model [27]:
The upper level describes note patterns and the lower level
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Fig. 2. Three different representations of a music score in previously proposed
models [5–8].

describes notes. Each note zm is indicated by the pair (k, `),
and the transition probability is given as

P
(
zm=(k′, `′)|zm−1=(k, `)

)
= δ`Lπkk′δ`′1 + δkk′δ`′(`+1),

where δ denotes Kronecker’s delta. A similar model based on
PCFG has also been proposed [8].

An additional advantage of the note-pattern model is that it
can incorporate the logical constraints for triplet notes etc. On
the other hand, a problem of this model is the treatment of
syncopations. Since a syncopated note lies across a bar bound-
ary, which is typically a boundary of note patterns, syncopated
notes cannot be described with the above note-pattern model.

C. Metrical Model

Another type of model that incorporates the metrical struc-
ture is the metrical (grid) model [5,7], in which musical notes
are represented by their onset beat positions in a bar. Let sn
denote the beat position of the n-th note and let G denote
the time span of a bar. The generation of musical notes is
described with a Markov model on a grid of beat positions,
and thus the probability of the sequence s1:N+1 is given as a
product of transition probabilities P (sn|sn−1) as in Eq. (1).
The note value of the n-th note is given as

xn =

{
sn+1 − sn, (sn+1 > sn);

G+ sn+1 − sn, (sn+1 ≤ sn),
(2)

i.e., sn+1 is interpreted as a beat position in the next bar if it
is smaller than or equal to sn.

Although the original metrical model limits note values to
the length of a bar, it is possible to extend the model to
describe larger note values. This can be done by introducing a
discrete variable jn = 0, 1, . . . , J−1 for each note n (for some
positive integer J), which describes how may bar lines are
passed between note onset n−1 and n. In other words, the note
value of the n-th note is now given as xn = jn+1G+sn+1−sn.
By taking the pair (sn, jn) as a state variable, we can extend
the model to accommodate note values up to JG.

The metrical model is advantageous in the treatment of syn-
copations. In Eq. (2) the n-th note is syncopated if sn+1 6= 0
and sn+1 ≤ sn. On the other hand, its disadvantage is the
difficulty of modifying or extending the model. For example, it
is necessary to construct different models for different metres.

III. PROPOSED MODEL

The proposed model consists of two components; a lan-
guage model and a performance model. Details of these mod-
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els and an inference algorithm are explained in this section.

A. Language Model

To describe incomplete repetitions of note patterns, we ex-
tend the model in Sec. II-B in two directions; integration of
modification of note patterns and Bayesian extension based on
the Dirichlet process to describe compact grammar.

1) Modification of Note Patterns: The output of our lan-
guage model, denoted by x1:N , is obtained by modifying the
note sequence generated by the note-pattern model in Sec. II-B,
denoted by z1:M in the following (Fig. 3). We consider note
insertions and syncopations, which are typical modifications
of note patterns in music practice. The total note values of the
corresponding notes are unchanged after these modifications.

Note insertions are represented by divided notes and thus
described with a probability of the form P (y1 · · · yQ|zm) where
y1, . . . , yQ are notes produced from zm by insertions, which
satisfy y1+· · ·+yQ = zm. We use the symbol Q as the number
of notes in an insertion pattern and q(= 1, . . . , Q) as an index
of a note in that pattern. Let Ch = y1 · · · yQ (h = 1, . . . ,H)
denote an insertion pattern (including the unchanged case)
and φ(k`)h denote the probability P

(
Ch|zm = (k, `)

)
. The

sequence of notes after note insertions will be denoted by
y1:N , which is specified by an applied insertion pattern hm
for each zm. This process of inserting notes can be integrated
in the basic model as yet another lower-level Markov model.

Syncopations can be regarded as simultaneous deviations of
the last note of a note pattern and the first note of the next
pattern (Fig. 3). Let x1:N represent a score with syncopations,
obtained from y1:N . Syncopations can be parameterised with
the degree of syncopation s, so that notes are modified as

yn → xn = yn + s, yn+1 → xn+1 = yn+1 − s, (3)

where xn+1 must be the first note of a note pattern1. The
parameter s can take either positive or negative values. A
positive (negative) s represents a suspension (anticipation).
Syncopations can be integrated in the model by extending the
state space of the basic model, wi, to a pair (wi, si). Using
the notation θs = P (s), the transition probability is extended
as P (wi = Bk′ , si|wi−1 = Bk, si−1) = πkk′θsi , assuming
independence of the probabilities of the component variables.
Extension of the initial probability is similar.

In summary, a score x1:N generated by the language model
is specified by stochastic variables w1:I , s1:I , and h1:M . This
means that each note xn is specified with a set of indices
(k, `, h, q, s) and the language model can be described as a
Markov model with the following transition probability:

P
(
xn = (k′, `′, h′, q′, s′)|xn−1 = (k, `, h, q, s)

)
= δqQφ(k′`′)h′δq′1

[
δ`Lπkk′θs′δ`′1 + δkk′δss′δ(`+1)`′

]
+ δhh′δ(q+1)q′δkk′δ``′δss′ . (4)

2) Dirichlet Prior: The parameters of the language model,
πk = (πkk′)k′ , π0 = (π0

k)k, φ(k`) = (φ(k`)h)h, and θ =
(θs)s, characterise the statistical properties of music. Because
used note patterns and types of modifications vary among

1The variable s introduced here has no relations with sn used in Sec. II-C.
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Fig. 3. Model for modification of note patterns.

musical pieces, different values of the parameters are consid-
ered for individual pieces. In the Bayesian framework, these
parameters are regarded as being generated from prior models.

The Dirichlet process can serve as a prior model that can
control the sparseness of the generated distributions. In the
case of finite distributions, the Dirichlet process for a discrete
distribution π is described with a base distribution ω and a
concentration parameter α as follows:

π ∼ DP(α,ω) = Dir(αω), (5)

where Dir(·) denotes the Dirichlet distribution. Distributions
obtained in this way satisfy E[π] = ω, and for small α most
components of π tend to be zero. We put such Dirichlet priors
for πk and π0:

πk ∼ Dir(αωk), π0 ∼ Dir(αω0). (6)

The hyperparameters ωk and ω0, when learned from a database,
are interpreted as a generic model (Fig. 1), or they can be set
to uniform distributions in an unsupervised learning setting.
When concentration parameter α is small, a compact grammar
is induced; i.e., a small number of note patterns will be used
for each piece. We also put Dirichlet priors for φ(k`) and θ:

φ(k`) ∼ Dir(ξ), θ ∼ Dir(λ). (7)

B. Performance Model

In the setup for rhythm transcription, the score is observed
indirectly through a performance. The performance signal is
specified with a sequence of onset times t1:N+1, or equiva-
lently, a sequence of inter-onset intervals d1:N where dn =
tn+1 − tn (n = 1, . . . , N ). A performance model gives the
probability P (d1:N |x1:N ) of a performance given a score.

The performance model we use is based on a linear dynam-
ical system proposed for score-performance matching [23,24].
The model describes two sources of temporal fluctuations in
music performance. One is the fluctuation in onset time due
to human motor noise and the other is the variation in tempos.
Tempo is considered as a latent variable vn, which represents
the ratio dn/xn up to the noise of onset time, and its varia-
tion is described with a Markov process. Assuming that the
sources for tempo variation and the noise in onset time are
both Gaussian, the performance model is given as

vn|vn−1 ∼ N(vn−1, σ
2
v), dn|vn, xn ∼ N(vnxn, σ

2
t ), (8)

where σv (σt) is the standard deviation for tempo variation
(motor noise). The complete-data probability for the perfor-
mance model is given as

P (d1:N , v1:N |x1:N ) =
N∏

n=1

P (dn|vn, xn)P (vn|vn−1), (9)

2016 24th European Signal Processing Conference (EUSIPCO)

1948



where P (v1|v0) ≡ P (v1) signifies the initial probability for
tempo. In practice, values of the tempo variable is discretised
in a range typically used for music practice to enable infer-
ence. By combining Eqs. (4) and (9), the proposed model is a
hierarchical HMM [27] with the latent variable Zn ≡ (xn, vn).

C. Inference

Our goal is to simultaneously infer the latent variables Z =
Z1:N and the parameters of the language model, Θ = (πk,π

0,
φz,θ), given the observed performance signal D = d1:N
and the hyperparameters Λ = (ωk,ω

0, α, ξ,λ). In the model-
learning step, the parameters Θ are estimated by maximising
the posterior P (Θ|D,Λ). In the transcription step, the latent
variables are estimated by maximising the posterior P (Z|D,Θ)
∝ P (Z,D|Θ), which can be done by the standard Viterbi
algorithm. Since direct maximisation of P (Θ|D,Λ) is difficult,
we use a Gibbs sampling method that yields asymptotically
exact inference. In this method, samples are drawn from the
joint distribution P (Z,Θ|D,Λ), from which samples from the
distribution P (Θ|D,Λ) can be obtained instantly.

The Gibbs sampling method is based on alternating sam-
plings of the parameters from the probabilities P (Θ|Z,D,Λ)
and the latent variables from the probabilities P (Z|Θ, D,Λ).
In the former sampling, model parameters are sampled from
posterior Dirichlet distributions. For example, the transition
probability πk is sampled as

πk|Z,Λ ∼ Dir
(
αωk + fk(Z)

)
, (10)

where fkk′(Z) is the number of times that transition Bk→Bk′

appears in x1:N . Other parameters can be sampled similarly.
We can use the forward filtering-backward sampling method

to draw samples from P (Z|Θ, D,Λ). After computing the
forward variables αn(Zn) = P (Zn, d1:n|Θ) by the forward
algorithm, the latent variables are sampled iteratively as

P (Zn|Zn+1:N , D,Θ) ∝ πZnZn+1
P (dn+1|Zn, Zn+1)αn(Zn)

with an initial draw of ZN from P (ZN |d1:N ,Θ) ∝ αN (ZN ).
Note that the latent variables x1:N and v1:N are highly corre-
lated in P (Z|D,Λ) and should be sampled jointly.

Because the number of states of the language models can
be O(104) and the product state space with the tempo variable
has even more states, the computational cost of the forward
algorithm can be impractical. This can be understood from
the quadratic time complexity of the forward algorithm: With
Ns states the time complexity of the forward algorithm is
O(NN2

s ). To solve this problem, we can use particle filtering
for the approximate calculation of the forward variables. With
Np particles the time complexity is reduced to O(NNsNp).

IV. EVALUATION

A. Setup

We evaluated the proposed model by comparing its accuracy
of rhythm transcription with that of previously studied models
based on HMMs. A database of MIDI performances of 30
Japanese popular songs by various artists was prepared by the
authors (the durations of the pieces ranged from about 15 sec

True

Estimated
Scaling

Substitution

Fig. 4. Example of scaling operations and substitutions to recover the correct
transcription from an estimated result.

to 50 sec). All normal, dotted, and triplet note values ranging
from the whole note to the 16th note were used as candidate
note values. For the proposed model, all note patterns of half-
note length consisting of these candidate note values and the
following note patterns of whole-note lengths were used: (1),
(3/4, 1/4), and (1/4, 3/4). All possible pairs of those note
values were used as note insertion patterns. The degree of
syncopation was also taken from the candidate note values
and their negative values and zero.

We tested the model in three different learning conditions,
supervised, semi-supervised, and unsupervised, and also in
two cases of with or without modifications to note patterns
(total of six cases). The supervised learning condition without
modifications is equivalent to the original note pattern model in
[6], for which (πk)k and π0 were trained with the melodies of
100 songs in the RWC popular music database [28]. For semi-
supervised learning (ωk)k, ω0, and λ were trained with the
same dataset. For unsupervised learning, all ωk and ω0 were
set to uniform distributions and λs = 10 if s = 0 and 0.05 oth-
erwise. Other hyperparameters were set as α = 700, ξh = 0.1
for the non-insertion case and 0.01 otherwise, σt = 0.02 s,
and σv = 0.06 seconds per quarter note [24].

For comparison, we implemented the note-level HMM using
note bigrams [6] and the metrical HMM [5]. These models
were also trained with the RWC database, and we set J = 2
for the metrical model. The performance model was the same
as that for the proposed model.

We used as an evaluation measure the rhythm correction
ratio, i.e., the ratio of the smallest number of edit operations
needed to correct the estimated result to the number of notes
in the data. In addition to note-wise correction (substitution),
the scaling operation applied for a subsequence of note values
was included (Fig. 4). This is because there is arbitrariness
in choosing the unit of note values: For example, a quarter
note played in a tempo of 60 BPM has the same duration
as a half note played in a tempo of 120 BPM. Although the
details must be omitted for the lack of space, the smallest
number of necessary edit operations Ne can be calculated by
a dynamic programming similar to that used in computation
of the Levenshtein distance. The rhythm correction ratio R is
then given as R = Ne/N .

B. Results

Results are shown in TABLE I. For the proposed model,
incorporation of the modification model of note patterns im-
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TABLE I
AVERAGE RHYTHM CORRECTION RATE R WITH STANDARD ERROR.

LOWER IS BETTER.

Model Learning Modification R [%]
1 Proposed Unsupervised X 12.8± 1.3
2 Unsupervised 16.5± 1.8
3 Semi-supervised X 6.6± 1.0
4 Semi-supervised 17.7± 2.2
5 Supervised X 7.8± 1.2
6 Supervised 14.7± 1.8
7 Note-level HMM [6] Supervised 7.9± 1.4
8 Metrical HMM [5] Supervised 7.3± 1.3

proved the average rhythm correction rate in all learning con-
ditions. By comparing the results for supervised learning and
semi-supervised learning with the modification model, we see
that the grammar induction for individual pieces indeed works
effectively. In the best case, i.e., the semi-supervised learning
condition with the modification model, the result outperformed
the previously studied models. With the modification model,
the unsupervised case was 5 points lower than the supervised
case. An example result (Fig. 5) shows that the proposed
model succeeded to capture the incomplete repetitive structure
with syncopations and note insertions.

There is still room for improving the performance of the
proposed model. One direction is removing the arbitrariness
in choosing the fixed length of note patterns by introducing
variable-length note-pattern model, which can be done with the
use of hierarchical Dirichlet process. Using pitch information
and modelling hierarchical repetitions would also be effective.

V. CONCLUSION

We have developed a framework for simultaneously infer-
ring the score and the individual language model behind it
from a performance signal. The proposed model has succeeded
to learn compact grammar and segment a piece into represen-
tative note patterns. We plan to extend the model to an infinite
vocabulary model, so that the representative note patterns of
variable length can be automatically inferred. Another direc-
tion is an extension for polyphonic music, for which introduc-
ing voice structure is a key issue. The presented formulation
of simultaneous grammar induction and data analysis would
be effective for realistic music transcription from audio signals
and also for NLP.
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