
Switch Conformer with Universal Phonetic Experts for Multilingual ASR

Masato Mimura1, Jaeyoung Lee2, Tatsuya Kawahara2

1NTT, Inc., Japan
2School of Informatics, Kyoto University, Japan

email@address

Abstract

Multilingual end-to-end ASR presents significant challenges
due to the need to accommodate diverse writing systems, lexi-
cons, and grammatical structures. Existing methods often rely
on large models with high computational costs for adequate
cross-language performance. To address this, we propose the
switch Conformer, which enhances model capacity while main-
taining nearly the same inference cost as a standard Conformer.
Our approach replaces the FFN module in each Conformer
block with a sparse mixture of independent experts, activating
only one expert per input to enable efficient language-specific
feature learning. In addition, a shared expert trained with pho-
netic supervision captures language-universal speech character-
istics. Experiments on streaming ASR using the CommonVoice
dataset demonstrate that these experts work synergistically to
achieve better performance than the baseline Conformer, with
minimal additional active parameters.
Index Terms: multilingual speech recognition, Conformer,
mixture of experts, IPA, articulatory features

1. Introduction
The performance of end-to-end (e2e) automatic speech recogni-
tion (ASR) [1, 2, 3, 4] has significantly improved primarily due
to advancements in encoder design [5, 6] and data augmentation
techniques [7, 8]. Furthermore, practically important but data-
scarce tasks, such as multilingual or noise-robust ASR, have
greatly benefited from recent developments in self-supervised
or weakly-supervised training strategies [9, 10, 11, 12, 13, 14].

Multilingual e2e ASR enables a single model to transcribe
speech across multiple languages, eliminating the need for
separate models per language and improving performance in
low-resource languages by leveraging data from high-resource
ones [15, 16]. However, as shown in models like Whisper [14]
and XLSR [13], it often requires large architectures with high
computational costs, limiting their feasibility for on-device or
streaming ASR. Furthermore, joint training across languages
without considering linguistic similarity can lead to negative
knowledge transfer, degrading performance [16, 17].

To address these issues, we propose the switch Conformer
architecture, augmented with shared universal phonetic experts.
We first modifies the original Conformer model [18] by replac-
ing its feed-forward network (FFN) module with a sparse mix-
ture of independent experts (SMoE). This largely increases the
capacity and expressiveness of the model, enabling it to better
accommodate various languages. Importantly, this modification
maintains almost the same inference cost as the standard Con-
former per frame, as each input is selectively routed to a single
expert with the same size as the Conformer FFN.

Then, to facilitate positive knowledge transfer across lan-
guages, we also introduce a small expert to capture language-
independent speech characteristics. This expert is shared among
all inputs, unlike those in the SMoE. Here, we specifically focus
on universal phonetic information, which can be systematically
represented using symbols from international phonetic alphabet
(IPA). By integrating this phonetic expert with the SMoE, our
framework aims to balance model capacity and computational
efficiency, and provide an effective inductive bias for multilin-
gual training on linguistically diverse languages.

2. Preliminaries
2.1. Multilingual ASR

Multilingual e2e ASR enables speech recognition across multi-
ple languages using a single deep sequence model. It is imple-
mented through various e2e frameworks [2, 3, 4, 1]. The output
layer’s vocabulary can be either a union of all grapheme units
across involved languages [15] or more universal byte-level to-
kens [14]. This approach eliminates the need for separate mod-
els per language and, more importantly, significantly improves
recognition performance for low-resource languages due to data
augmentation via high-resource languages.

Recent advancements in self-supervised and weakly su-
pervised learning have enabled the use of large-scale real-
world data, fundamentally improving multilingual ASR perfor-
mance [13, 14]. However, these methods often require large
models, which leads to high computational costs during infer-
ence. This is likely due to the need to accommodate variations
in writing scripts, lexicons, and grammatical structures.

Another issue in the current framework of multilingual
ASR is that simply increasing the number of languages does
not necessarily improve performance for each one [16, 17]. In
particular, within the capacity constraints of typical ASR mod-
els, training linguistically unrelated or geographically distant
languages together can lead to degraded performance, such as
Cyrillic-script and Quechuan languages [16].

2.2. IPA

E2e ASR generally uses grapheme-based tokens such as sub-
words and characters, as output units. However, these units are
inherently tied to a language’s writing system and cannot be eas-
ily shared across languages. As a result, models trained solely
on grapheme targets struggle to transfer knowledge from one
language to another.

To address this, incorporating lower-level, language-
independent phonetic units as auxiliary targets can improve
joint training efficiency. For example, Adams et al. [16] showed
that using an auxiliary phoneme prediction task improves over-
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all performance. The international phonetic alphabet (IPA)
offers a standardized system for transcribing speech sounds
across languages, making it a useful representation of language-
universal phonemes. By explicitly encoding distinct phonetic
features, IPA-based targets in multilingual training can better
capture cross-linguistic characteristics in speech.

Several grapheme-to-phoneme (g2p) tools convert
grapheme transcriptions to IPA sequences [19, 20, 21].
However, most are dictionary-based and do not account
for context-dependent phonological variations, leading to
inevitable errors. For example, the ByT5-based multilingual
g2p tool [19] achieves a phone error rate below 5% for
half of its supported languages but can reach up to 30% for
low-resource languages. To mitigate g2p errors, IPA prediction
should be used as an auxiliary task with a lower impor-
tance weight [16, 17] or supplemented with more universal
articulatory features [22, 23, 17].

2.3. Sparse mixture of experts

The mixture-of-experts (MoE) framework was originally pro-
posed to enhance model expressiveness [24]. It consists of mul-
tiple subnetworks, each specialized in handling a subset of the
complete set of training examples.

A key variant, sparse MoE (SMoE), activates only a small
subset of subnetworks for each input [25, 26]. This approach
preserves the expressive power of MoE while significantly
reducing computational overhead during inference. A well-
known implementation is the switch Transformer [26], where
the FFN in a Transformer [27] is replaced with a set of experts
of equal size, and only one expert is selected per input. Expert
selection is managed by a router network G(·), implemented as
a fully connected layer parameterized with W g and bg:

p(x) = softmax(W gx+ bg), G(x) = top-1(p(x)) (1)

where x is an input representation and top-1(·) is a selection
function that outputs the largest value. The final output of the
SMoE module is calculated as G(x)Ei(x), where i is the index
of the selected expert and Ei(x) is its output.

SMoE-based models with a trainable router often suffer
from the routing imbalance issue that only a small subset of
experts is frequently selected, while the others remain under-
trained. To encourage balanced expert assignment, the follow-
ing balancing loss function is commonly used [25, 28].

Lbalance(x) =

nexpert∑
j=1

(pj(x)−
1

nexpert
) (2)

where nexpert is the total number of experts and pj(x) is the
j-th element of the selection probability vector p(x) in (1).

3. Proposed method
We propose an approach to enhance the model capacity to better
accomodate various languages or language families (§3.2), and
promote knowledge sharing among distant languages (§3.3).

3.1. Switch Conformer

Our framework is based on Conformer [5], in which we replace
the second FFN module with an SMoE consisting of nexpert in-
dependent experts, forming what we term the switch Conformer
block. This allows the model to effectively handle highly het-
erogeneous data. Each expert has the same structure as the
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Figure 1: Switch Conformer block with shared phonetic expert.

Conformer FFN, consisting of two linear transformations with
a ReLU activation function in between, defined as:

Ei(x) = W 2 ReLU(W 1x+ b1) + b2 (3)

where W1 ∈ Rdmodel×dexpert and W2 ∈ Rdexpert×dmodel .
The expert FFN dimension dexpert is set equal to the baseline
Conformer FFN dimension dff . As illustrated in Figure 1, a
trainable router selects a single expert from the SMoE using the
top-1 selection function, following the switch Transformer
paradigm.

This design choice is motivated by the following consider-
ations. First, previous studies have shown that Conformer con-
sistently outperforms the vanilla Transformer in various ASR
tasks [29, 18]. Second, in our preliminary experiments, replac-
ing the first FFN module with the SMoE led to significantly
worse performance compared to replacing the second FFN.
Third, increasing the number of active experts also negatively
affected performance, possibly due to the reduced capacity per
expert to maintain constant computational cost.

As illustrated in Figure 2(a), we train the entire network,
consisting of L switch Conformer blocks, using the primary
grapheme-based targets. To further mitigate the routing imbal-
ance mentioned in §2.3, we introduce the expert dropout strat-
egy in combination with the balancing loss. In this approach,
each expert is randomly dropped with a probability of 0.1, pre-
venting specific experts from being disproportionately selected.
Because this is harmful in later training steps, we apply this
strategy only for the first 5k steps.

3.2. Universal phonetic experts

To promote cross-lingual knowledge sharing, we introduce the
universal phonetic expert along with the SMoE module in each
block. It is implemented as an FFN with a capacity dshared,
determined by the capacity ratio cshared as dshared = cshared ·
dff . When incorporating this shared expert, the FFN dimension
of an expert in SMoE is reduced to dexpert = (1 − cshared) ·
dff . Unlike SMoE, which selectively routes inputs, the univer-
sal phonetic expert processes all inputs. Thus, the output of the
combined module is calculated as G(x)Ei(x) + Eshared(x).

This phonetic expert is designed to capture universal pho-
netic features by training against IPA sequences as targets. As
illustrated in Figure 2(b), during loss calculation with IPA tar-
gets yipa, all SMoE experts are deterministically dropped by
zeroing out all elements in the selection probability vector p, so
that the shared expert explicitly learns to specialize in acoustic-
to-phoneme mapping. In contrast, when training with primary
grapheme targets yg , both the SMoE and the phonetic expert
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Figure 2: (a) Expert dropout and (b) target-based routing strategies for training on grapheme and phonetic targets, respectively.
Convolution, attention and FFN modules are omitted in the switch Conformer block for clarity.

contribute to the encoder output (Figure 2(a)). We refer to this
simple yet effective approach as target-based routing training
for phonetic experts. The overall loss function is given by:

L = Lrnnt(yg,x
L) + 0.3 · Lctc(yg,x

L) +

0.1 · Lctc(yipa,x
3
4
L) + 0.1 · 1

L

L∑
l=1

Lbalance(x
l−1) (4)

where xL represents the output of the L-th encoder layer, and
x

3
4
L is the output of the 3

4
L-th layer computed using the target-

based routing. Following [17, 16], the IPA loss is applied at a
lower layer, based on the observation that phonetic information
is encoded at shallower layers to graphemes. Lctc and Lrnnt

are the loss functions of the CTC [1] and RNN-T [2] criteria.

4. Experimental evaluations
4.1. Datasets

For our experiments, we constructed two datasets from Com-
monVoice [30] v16.1. The first, WE-5langs, consists of five ma-
jor Western European languages: German (de), English (en),
Spanish (es), French (fr), and Italian (it). This set evalu-
ates the effectiveness of our approach in high-resource, geo-
graphically proximate languages. The second, Global-5langs,
includes a linguistically and geographically diverse selection:
Arabic (ar), Bengali (bn), Russian (ru), Swahili (sw), and
Thai (th). This set assesses model performance on low-
resource languages with distinct writing systems and linguistic
characteristics. To ensure statistical reliability, we selected lan-
guages with at least 30 hours of training data. We also created
All-10langs, a combined set of WE-5langs and Global-5langs,
representing a practical scenario where low-resource ASR train-
ing is augmented with high-resource language data. Table 1
summarizes the dataset specifications.

Because we found that no single g2p tool gives consistently
accurate results across languages, we used three different tools
for g2p conversion, namely, the ByT5-based g2p tool (Char-
siu) [19] (ar, de, en, es, fr, it, ru, sw), Phonetisaurus [20]
(bn) and Epitran [21] (de, th). We build vocabularies of 0.5k,
2k and 3k word pieces using byte pair encoding [31] for mono-
lingual, 5-lang and 10-lang models, respectively. All multilin-
gual models with the phonetic experts share the same IPA vo-

Table 1: Specifications of 10 languages in CommonVoice v16.1

code subfamily region train (h)

de Germanic 913.7
en Germanic 1720.8
es Romance,Italic Western Europe 473.1
fr Romance,Italic 777.1
it Romance,Italic 247.9

ar Afro-Asiatic Middle East 32.3
bn Indo-Iranian South Asia 33.7
ru Slavic Eastern Europe 37.8
sw Atlantic-Congo Sub-Saharan Africa 69.4
th Kra-Dai South-East Asia 37.4

cabulary consisting of 247 distinct symbols.

4.2. Models

In our experiments, we focus on streaming multilingual ASR
based on RNN-Transducer [2], because improving computa-
tional efficiency is more critical in the streaming setting. We
use 80-dimensional log-Mel filterbank outputs, extracted with
a window size of 25ms at every 10ms, as the input features.
The feature sequences are then subsampled using a 2-layer 2D
convolutional network with 256 filters, a kernel size of 3 and a
stride of 2, at a rate of 4, before fed into the encoder.

All the models consist of 12 chunk-wise Conformer blocks
[32, 33], and the model dimension dmodel, FFN dimension dff
and the number of attention heads are set to be 512, 2048, and
8, respectively. We used the chunk size of 20 and the history
size of 20 for streaming chunk processing. We use the RNN-T
architecture [2] with a prediction network consisting of a one-
layer unidirectional LSTM with 512 cells, and a feed-forward
joint network with 640 cells. We take the IPA loss at the 8-th
layer as shown in Figure 2 (b). We set the capacity ratio of the
phonetic expert cshared to be 1

16
, and thus dexpert = 1920 and

dshared = 128. We set the number of experts in the SMoE,
nexpert, to be 8. We add these experts to all of 12 Conformer
blocks when building the proposed models.

All models were trained using the Adam optimizer [34]
with a linear-warmup of 25k steps and a peak learning rate of
0.0015. We evaluated the models in word error rate (WER) for
WE 5-langs, while used character error rate (CER) for All 10-

1130



Table 2: Results for WE-5langs (WER / CER (%))

training # active
data model params de en es fr it ave.

monolingual Conformer 83M 13.4 / 4.1 25.7 / 11.8 19.3 / 6.4 17.7 / 6.0 30.3 / 8.5 21.2 / 7.4

WE-5langs Conformer 87M 14.0 / 3.9 24.2 / 10.7 13.1 / 4.0 19.0 / 6.3 15.9 / 4.1 17.3 / 5.7
switch Conformer 87M 12.4 / 3.4 22.6 / 10.0 11.8 / 3.5 17.2 / 5.7 13.7 / 3.5 15.6 / 5.1
+ phonetic expert 87M 12.2 / 3.3 22.1 / 9.7 11.5 / 3.4 16.9 / 5.5 13.6 / 3.5 15.3 / 5.0

Table 3: Results for All-10langs (CER (%))

training # active
data model params de en es fr it ave. ar bn ru sw th ave.

monolingual Conformer 83M 4.1 11.8 6.4 6.0 8.5 7.4 51.6 82.4 15.1 11.8 19.8 34.6

All-10langs Conformer 90M 4.0 10.9 4.1 6.5 4.2 5.8 35.9 11.2 12.7 9.5 14.4 14.6
switch Conformer 90M 3.5 10.0 3.5 5.7 3.6 5.2 36.7 9.7 10.9 8.8 13.8 13.6
+ phonetic expert 90M 3.4 9.9 3.5 5.6 3.6 5.1 35.0 8.7 10.4 8.5 12.3 12.7

langs, because some languages in this set do not have explicit
word boundaries in their writing systems.

4.3. Results on WE-5langs

Table 2 presents the results for the monolingual and mul-
tilingual models evaluated on WE-5langs. Comparing the
monolingual and multilingual Conformer baselines, we ob-
serve that multilingual training reduces WER except for de and
fr, which already have large training datasets and relatively
lower monolingual WERs. The switch Conformer consistently
and significantly outperformed the baseline across all five lan-
guages. In particular, it achieved lower WERs than the mono-
lingual models even for de and fr, indicating that the SMoE
module effectively mitigates the negative transfer observed in
the baseline Conformer. Adding phonetic experts led to further
improvements across all five languages, despite that additional
phonetic supervision has been shown to be less effective for lan-
guages sharing similar graphemes in a previous study [16]. This
supports the effectiveness of our approach compared to conven-
tional models that do not use a dedicated subnetwork special-
ized in predicting phonetic units from speech. Both improve-
ments in WER from the use of the SMoE and the phonetic ex-
pert are statistically significant at the 1% level.

4.4. Results on All-10langs

Table 3 compares the results for models trained on ALL-
10langs. Incorporating the SMoE module consistently im-
proved performance over baseline monolingual and multilin-
gual Conformer models, except for ar, where the baseline mul-
tilingual Conformer achieved a slightly lower CER. Notably,
the Switch Conformer with universal phonetic experts achieved
the lowest CERs across all languages, including ar.

Comparing the results for WE-5langs and Global-5langs,
we find that using universal phonetic information is particularly
effective for low-resource languages with distinct graphemes
from the Western languages. The large gains in bn and th can
be attributed to the relatively small numbers of IPA units used
in these languages (51 and 42), which increased the number of
training examples per unit. These results suggest that phonetic
experts facilitate knowledge sharing across distant languages,
while SMoE effectively captures language-specific variations.
On average, the addition of the phonetic experts reduced CER
by 0.9 points over the vanilla switch Conformer for Global-
5langs, a statistically significant improvement at the 1% level.

Table 4: Ablation on proposed techniques (CER (%)).

WE-5langs other 5 langs

switch Conformer w/o expert drop 5.3 13.8
switch Conformer 5.2 13.6
+ shared expert 5.2 13.6
+ IPA auxiliary task 5.2 13.2

+ target-based routing 5.1 12.7

We conducted an ablation study to evaluate the impact of
the techniques introduced in this work. As shown in Table 4,
expert dropout training (rows 1–2) effectively enhances the per-
formance of the switch Conformer. The third row (“+ shared ex-
pert”) demonstrates that simply adding shared experts without
assigning them an explicit role does not provide any gains while
not harmful, likely due to the slightly reduced capacity per ex-
pert. The fourth row presents results obtained using an IPA aux-
iliary task without our target-based routing strategy. Comparing
this with the final row, we see that separately routing inputs for
IPA and grapheme targets, as discussed in §3.2, is crucial for
achieving meaningful improvements.

5. Related work
Unlike their fundamental role in recent LLM advancements
(e.g., [35][28]), sparse experts remain underexplored in ASR.
SpeechMoE [36] and its successor, SpeechMoE2 [36], were the
first to apply MoE to ASR, demonstrating its effectiveness in
multi-domain and multi-accent ASR tasks using CTC-based of-
fline models. Our approach differs in two key ways: we en-
hance capacity of the state-of-the-art Conformer for better per-
formance, and more importantly, incorporate universal phonetic
information to address issues inherent to multilingual ASR.

6. Conclusion
This paper proposed a novel architecture that enhances model
capacity while effectively balancing language-universal knowl-
edge and language-specific features to improve multilingual
ASR. Our approach significantly improved performance in ma-
jor Western European languages and proved particularly ef-
fective for low-resource languages. Future work will focus
on incorporating more universal articulatory features for better
adaptability to low-resource languages [22, 23]. We are also in-
terested in layer-wise analysis of expert assignment by the train-
able router for different languages, speakers and phonemes.
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