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Abstract

We address multi-lingual speech recognition including un-
known or zero-shot languages based on the International Pho-
netic Alphabet (IPA) and articulatory features. Articulatory fea-
tures are language-independent representations for IPA based
on phonetic knowledge. In the previous studies, however, they
were mostly limited to two dimensions of place of articulation
and manner of articulation. Moreover, the classification of artic-
ulatory features were not well aligned with phone recognition.
In this study, we adopt a comprehensive 24-dimensional vec-
tor representation, and propose a training method in which IPA
tokens and their corresponding articulatory features are simul-
taneously predicted based on CTC alignment. Experiments are
conducted by fine-tuning the wav2vec 2.0 XLS-R model over
22 languages, and the results demonstrated significant improve-
ments on average as well as in zero-shot language settings.
Index Terms: zero-shot speech recognition, articulatory fea-
tures, IPA, CTC

1. Introduction

In recent years, the advent of deep learning models has led to
remarkable improvements in speech recognition [1]. However,
achieving high performance in end-to-end models requires huge
amounts of speech and transcription data. Consequently, speech
recognition for low-resource languages, especially unseen or
zero-shot languages, results in poor performance.

Speech recognition for very low-resource or endangered
languages is of great significance, as it contributes to under-
standing of their linguistic structures and preservation of the
culture associated with these languages. Since they often do
not have orthographic systems, the IPA (International Pho-
netic Alphabet) is usually adopted in transcription of speech of
those languages. One promising approach for automatic speech
recognition of these languages is fine-tuning a large-scale model
which is pre-trained over many languages, since it can utilize
knowledge acquired during pre-training and can share IPA to-
kens over many languages. Moreover, incorporating phonetic
knowledge can help improve the performance [2—4], but the pre-
vious studies have not sufficiently leveraged this knowledge for
modeling and training of speech recognition.

To improve IPA-based speech recognition, we incorporate
an explicit articulatory feature classification mechanism, which
provides a language-independent phonetic representation. Ar-
ticulatory feature representations have typically been determin-
istically described along two dimensions: place of articulation
and manner of articulation. However, they cannot describe all
of the IPA, and IPA has more elaborate and detailed description
of articulatory features. We adopt a flexible representation with
a 24 dimensional vector. This approach allows for a universal
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phonetic description that represents all of the IPA in a compre-
hensive manner.

In order to recognize both IPA tokens and corresponding ar-
ticulatory features, synchronizing frame-wise articulatory fea-
ture classification with IPA token prediction is critical. How-
ever, this problem was not well addressed in the previous stud-
ies. In the proposed method, we first align IPA tokens at the
frame level using Connectionist Temporal Classification (CTC)
[5], then estimate corresponding articulatory features for each
output frame. We introduce Articulatory Feature Classification
Module (AFCM), and compute the cross-entropy loss between
the expected articulatory features and the AFCM’s output at the
CTC-aligned frames. In this manner, the model training is con-
ducted by synchronizing articulatory feature classification with
IPA token prediction. We demonstrate that this method im-
proves performance in speech recognition for multi-lingual and
zero-shot scenarios.

Section 2 discusses previous studies on speech recognition
using articulatory features. Section 3 then describes the clas-
sification mechanism of articulatory features and the proposed
model architecture. Section 4 presents the experimental evalua-
tions, followed by the conclusion in Section 5.

2. Related Work
2.1. Articulatory Features for IPA

Articulatory features are defined for IPA tokens, and are con-
ventionally described on two dimensions: place of articula-
tion and manner of articulation. However, this framework can
only be used for basic consonants, and cannot represent sounds
with diacritics, for example, aspirated sounds such as [ph].
Mortensen et al. [6] redefined articulatory features and proposed
Panphon, a model that converts IPA tokens into articulatory fea-
tures. It defines 24 types of articulatory features, which can
have three values: +1 (present), -1 (not present), or O (don’t
care). They have meanings such as syl (syllabic: whether it
is the core of a syllable), son (sonorant: whether it is a reso-
nant sound), and cons (consonantal: whether it is a consonant).
By preprocessing with Panphon, each IPA token is converted
into a 24-dimensional 3-value vector. This representation cov-
ers all consonants and vowels, including those which cannot be
described by the conventional representation. Thus, this frame-
work is more flexible, accurate, and comprehensive.

2.2. Modeling of Articulatory Features

Previous studies related to this study can be categorized into
those utilizing articulatory features [7-10], those employing the
IPA [11-18], and those incorporating both [19-22]. This sec-
tion discusses the studies that are relevant to our work.
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Li et al. [20] applied a language-specific transformation
matrix to map articulatory features to phonemes. This ap-
proach can be applied to zero-shot scenarios, but the transfor-
mation matrix was not shared across languages. Moreover, this
approach adopted a simple cascading structure of connecting
acoustic space, attribute space, and phoneme space, and trained
it from scratch, resulting in poor performance.

Lee et al. [21] incorporated a transformation matrix from
articulatory features to IPA tokens within their model. This im-
plicitly learns the prediction of articulatory features, which as-
sists IPA recognition. However, those articulatory features are
not explicitly utilized as supervisory signals for model training.

Lietal. [10] concatenated articulatory features (manner and
place of articulation) for end-to-end speech recognition. How-
ever, their approach relied on language-dependent orthographic
representations, making it unsuitable for unseen languages. Ad-
ditionally, their articulatory features were limited to a subset of
places and manners of articulation.

Yen et al. [22] enhanced IPA prediction by incorporating
recognition of manner and place of articulation as subtasks.
They introduced three classifiers for IPA tokens, manner of ar-
ticulation, and place of articulation in parallel. Predictions of
manner and place of articulation were then transformed through
projection matrices to assist IPA token recognition. Their ap-
proach employs multiple CTC loss functions for IPA token pre-
diction alongside manner and place of articulation recognition.
Since these loss functions are computed independently, IPA,
manner, and place of articulation are not synchronously learned.
This lack of alignment comes from a fundamental problem of
the end-to-end speech recognition. Furthermore, similar to Li
et al. [10], their approach used mutually exclusive categories of
manner and place of articulation, which restricts the expressive-
ness of articulatory feature representation.

3. Proposed Method

In this study, we propose a language-independent IPA predic-
tion model by defining the union of all IPA tokens across lan-
guages as the output vocabulary. Additionally, we define articu-
latory feature prediction as a subtask of CTC-based IPA pre-
diction. The articulatory features are explicitly aligned with
IPA token labels during training, and serve as augmented objec-
tives synchronized with the output IPA tokens. Each IPA token
is represented by 24 articulatory features, encoded with a 24-
dimensional ternary vector, which provides richer information
than two dimensions of manner and place of articulation. This
approach enables the model to explicitly learn articulatory fea-
tures in synchronization with IPA token prediction, constructing
a language-independent speech recognition system.

3.1. IPA tokenization

The IPA labels are obtained by converting language-specific
texts into IPA tokens using Epitran [23]. Since the model pre-
dicts IPA tokens as output, it must account for languages that
do not use spaces to separate words. To maintain consistency,
we omit spaces between words in IPA label data, designing a
model to avoid predicting a space between words.

Diacritics (such as " or ¥) and coarticulation symbol O are
meaningful only when they are attached to other IPA characters.
Taking these symbols into consideration, tokenization is defined
such that each IPA unit corresponding to a single articulatory

feature vector is treated as a single token. For example, [ts"ifan]

hs ¢

is tokenized as [‘ts"’, ‘1", ‘f’, ‘a’, ‘n’]. The union of all resulting
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Figure 1: Computation of the auxiliary loss. Non-contributory
loss value is defined as ¢, while -1 and 1 in articulatory features
are converted to 0 and 1 for binary classification.

tokens constitutes the output token set of the model.

3.2. Auxiliary Loss based on Articulatory Features

When a model being trained with CTC becomes relatively sta-
ble, it can compute an alignment between its output and the IPA
labels. It allows for alignment of IPA tokens corresponding to
each output frame, thereby obtaining the articulatory features
for each frame. Note that, in CTC, there are many blank tokens,
which do not result in any articulatory features. This means
articulatory features are classified only at meaningful frames.

By converting the IPA tokens obtained through CTC align-
ment into 24-dimensional articulatory feature vectors, the
ground-truth label for articulatory features is dynamically ob-
tained. For non-IPA tokens (blank and padding tokens), a non-
contributory loss value is assigned. Each dimension of the ar-
ticulatory feature vector takes one of three values: 1 (the corre-
sponding articulatory feature is present), -1 (absent), 0 (don’t
care). Only dimensions with values of -1 or 1 contribute to
the loss computation. This allows the auxiliary task to be for-
mulated as a binary classification for each articulatory feature
dimension. By designing the auxiliary output such that each
frame produces a (24, 2) matrix, and given that the ground-truth
articulatory feature vector for each frame is a 24-dimensional
binary vector, cross-entropy loss is computed for each frame
and each dimension. The computation of this auxiliary loss is
illustrated in Figure 1. Note that the binary vector has the third
value for not calculating the loss.

3.3. Articulatory Feature Classification Module (AFCM)

The Articulatory Feature Classification Module (AFCM) is il-
lustrated in Figure 2. It consists of three components: linear
transformation unit, gating unit, and articulatory feature extrac-
tion unit, from left to right. Since articulatory feature prediction
is defined as a (24, 2) matrix, the extraction unit first transforms
the input vector into a 24 x2 = 48-dimensional space using a
linear transformation, then reshapes it into a (24, 2) matrix, ap-
plying the Softmax function. This serves as the auxiliary output
for articulatory feature prediction, where auxiliary loss is com-
puted. The output is converted back to a 48-dimensional vector
before passing through a linear transformation to match the re-
quired output dimensions. The other linear transformation unit
operates in parallel with the extraction unit. To regularize the
contributions of the extraction unit and the linear transformation
unit, gating is introduced. The gating weights are constrained
between 0 and 1 with a sum of 1 using a Sigmoid function. With
this structure, AFCM produces both a main output with an ar-
bitrary dimension and an auxiliary output in the form of a (24,
2) matrix.
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Figure 2: Structure of Articulatory Feature Classification Mod-
ule (AFCM). Auxiliary output is used for frame-wise classifica-
tion of articulatory features.

3.4. Entire Model Architecture

We adopt a pre-trained model of wav2vec 2.0 XLS-R [24, 25]
for both of the baseline and the proposed method. The over-
all architecture of the proposed model is depicted in Figure 3.
An AFCM is used as the final output layer instead of the con-
ventional linear layer. Additionally, another AFCM is inserted
between the Transformer layers of the wav2vec 2.0 encoder,
and the main output undergoes GELU activation [26] and is
residual-connected to the subsequent Transformer layer input.

The model produces three types of outputs: the main out-
put of the AFCM at the final layer, the auxiliary output of the
AFCM at the final layer, and the auxiliary output of AFCM be-
tween the intermediate layers. CTC loss (Lcr¢) is computed
with the main output at the final layer and the ground-truth IPA
label sequence. During this process, alignments are computed
to obtain frame-level IPA token sequences including blank to-
kens. The aligned IPA tokens are converted into the articula-
tory feature representation, which serves as the ground truth for
the frame-wise auxiliary outputs. The two auxiliary outputs are
trained to classify the articulatory features for each frame us-
ing cross-entropy loss (LcE1, Lo r2) for the final layer and the
intermediate layer, respectively.

The total loss £ is defined as follows:

L =Lcrc+ Ace1Lcer + Ace2LcE

Ack1 and Acge are hyper-parameters that control the weights
of auxiliary losses.

4. Experimental Evaluations
4.1. Dataset

For the experiment, we use multi-lingual speech datasets that
include zero-shot languages. Common Voice [27] 16.1 is an
open-source speech dataset provided by Mozilla, containing
over 30,000 hours of speech data in 120 languages. From
this dataset, we selected 23 languages for which Epitran [23]
supports grapheme-to-phoneme (G2P) conversion. A subset of
these languages was further sampled to create a dataset totaling
280.3 hours. The selected languages are split into four cate-
gories in evaluation: 13 languages have training data of approx-
imately 20 hours for each, and are treated as relatively high-
resource languages. Three languages have training data within
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Figure 3: Architecture of the proposed model. AFCMs are in-
serted between Transformer layers, and as the output layer:

a range of 4.93 to 7.62 hours, and are classified as middle-
resource languages. Furthermore, six languages have training
data within a range of O to 1 hour, and are categorized as low-
resource languages. Ligurian is not used either in pre-training
or fine-tuning, so it is categorized as a zero-shot language.

For another zero-shot language, we use Speech Corpus of
Ainu Folklore [28, 29], which is based on oral recordings of
folktales of the critically endangered Ainu language. In this
experiment, we use the dataset described in [29], where evall
serves as the test set and eval2 as the validation dataset. A single
model is trained by using the two datasets to cover all of the
languages.

4.2. Data Preprocessing

For Common Voice, G2P conversion is performed using Epi-
tran for each language to obtain IPA sequences. There is no
existing G2P model for Ainu, but the transcription of Ainu is
primarily phonemic and written in the Latin alphabet, and most
of the symbols are identical to IPA transcription. For a few ex-
ceptions, we employ a rule-based approach that maps tokens
one-to-one to IPA sequences according to [30]. The text-to-IPA
conversion rules are shown in Table 1. For context-dependent
allophones due to regressive assimilation, IPA conversion is per-
formed considering adjacent phonemes. Next, we tokenize the
IPA sequences in the training data so that each single token is
represented as a single articulatory feature vector. In these pre-
processings, we obtained a vocabulary of 297 IPA tokens.

Table 1: Conversion rules from Ainu orthography to IPA.

Orthography || ¢ r y hi hu np nk =
IPA tf ¢ j ¢ Pdu mp gk

4.3. Experimental Settings

The backbone of both of the baseline and the proposed model is
wav2vec 2.0 XLS-R 300m. The baseline model applies a linear



Table 2: Speech recognition performance comparison by Trans-
former Layers to insert AFCM (CER [%]). Settings of high,
mid, low, zero mean high-resource, middle-resource, low-
resource, and zero-shot split, respectively. 5-6 means AFCM
is inserted between the 5th and the 6th Transformer layers, in
addition to the final layer, for example.

Setting | high mid low zero | ave
baseline | 1556 25.16 5096 39.10| 16.19
56 | 1555 26.12 5240 3821 16.25

7-8 | 1494 2469 5348 38.38| 15.66

9-10 | 13.84 2450 5236 37.59| 13.85

11-12 | 14.99 2487 4997 37.96| 14.99

proposed | 13 14 | 1240 2440 46.86 36.48| 13.12
15-16 | 1441 2649 5175 36.86| 14.42

19-20 | 14.01 2646 50.72 38.63| 14.78

2324 | 1418 2653 49.89 39.35| 14.93

layer to the output of the Transformer, and is trained using CTC
loss. In the proposed model, the output linear layer is replaced
with an AFCM, and another AFCM is inserted between some
intermediate layers. The number of the parameters of AFCM is
negligible compared to the baseline model.

Both of the baseline and the proposed model are trained
with a batch size of 120. The learning rate is selected from
{1 x107% 2 x 107%, 4 x 107%, 8 x 10™* } as a hyper-
parameter, and is set to 2 x 10~%. It increases linearly from 0
during the first 10% of the training steps and decreases linearly
to 0 over the final 50%. The models are trained over 30 epochs
with AdamW [31] optimizer. To mitigate the imbalanced lan-
guage distribution, the probability of using each training sam-
ple is configured for its language. Using the temperature-based
method [32], languages with less training data were set to be
used more frequently than their original ratios. The tempera-
ture parameter T is selected from {1, 4, 8} as a hyper-parameter,
and set to 7 = 4. All the hyper-parameters are selected so that
the baseline performs the best. For evaluation, Character Error
Rate (CER) is computed for the IPA characters. When calculat-
ing CER, diacritics as well as coarticulation symbols are treated
as single characters.

In the proposed model, the Transformer layers to insert
AFCM in-between is selected from the set {5-6, 7-8, 9-10, 11-
12, 13-14, 15-16, 19-20, 23-24}, where 5-6 means AFCM is
inserted between the 5th and the 6th Transformer layers, in ad-
dition to the final layer. The loss weights are set as Acg1 = 1
and A\cg2 = 1.5.

4.4. Results

The results for each experimental setting are presented in Table
2. In all splits (high, mid, low, and zero), the proposed method
achieves a better CER than the baseline. The setting of inserting
the AFCM between the 13th and the 14th Transformer layers,
which was identified as the optimal configuration for all splits,
showed statistically significant improvements over the baseline
at the 1% significance level for all splits. A relative improve-
ment of 18.96% is gained on average.

Table 3 shows the comparison between the baseline and
proposed method at its best setting. The proposed model out-
performs the baseline in almost all of the languages. In the
low-resource split, however, both of the baseline and proposed
method exhibit low performance. This might to be caused not
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Table 3: Speech recognition performance comparison between
the baseline and proposed method (CER [%]). The proposed
method is on its best setting, where AFCM is inserted between
the 13th and the 14th Transformer layers.

Split | Language | train [hrs] | baseline | proposed
Kinyarwanda 20.5 23.74 20.85

French 20.2 17.02 13.92

German 20.2 14.00 11.66

Swabhili 20.1 16.64 12.37

Chinese (China) 20.0 11.00 10.74
Hungarian 20.0 9.70 8.06

high Turkish 20.0 20.71 16.45
Polish 20.0 19.54 11.88

Thai 20.0 16.90 14.59

Italian 20.0 11.38 7.50

Tamil 20.0 30.16 22.53

Esperanto 19.8 5.98 4.94

Spanish 19.8 11.15 9.05

Indonesian 7.62 33.22 31.92

mid Romanian 5.63 24.37 22.89
Kurmanji Kurdish 4.93 12.89 14.68
Ambharic 0.659 55.10 5343

Korean 0.618 48.26 42.22

low Lao 0.096 28.30 26.42
Azerbaijani 0.070 58.21 44.37

Telugu 0.044 59.75 61.68

Tigrinya 0.021 76.92 71.15

sero Ligurian 0 30.71 29.89
Ainu 0 40.07 37.23

only by insufficient training data size, but also by G2P con-
version errors for these languages. This problem needs to be
addressed in the future.

5. Conclusion

This study focuses on multi-lingual speech recognition whose
output is represented by IPA tokens, so that the model can be
utilized for transcription of zero-shot languages. The articu-
latory features of 24-dimensional vectors, which are adopted
in this study, cover comprehensive phonetic knowledge in con-
trast to the previous studies. In the proposed model, the Artic-
ulatory Feature Classification Module (AFCM) identifies artic-
ulatory features, and frame-level synchronous articulatory fea-
ture labels are obtained from alignment using CTC. This al-
lows for flexible and accurate training with improved supervi-
sory signals. The proposed model incorporates the articulatory
feature classification as an auxiliary task to enhance the token
prediction instead of its use as pre-processing for the main task
adopted in most of the previous works. This framework allows
for effective yet robust enhancement, which is confirmed by
consistent improvements over almost all languages including
zero-shot languages. As a result, the improvements are much
larger than those reported in the previous studies [20, 22], al-
though the exact experimental settings are not the same.
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