
IMPROVING VERY DEEP TIME-DELAY NEURAL NETWORK WITH
VERTICAL-ATTENTION FOR EFFECTIVELY TRAINING CTC-BASED ASR SYSTEMS

Sheng Li1, Xugang Lu1, Ryoichi Takashima1, Peng Shen1, Tatsuya Kawahara1,2, and Hisashi Kawai1

1National Institute of Information and Communications Technology, Kyoto, Japan
2Kyoto University, Kyoto, Japan

sheng.li@nict.go.jp

ABSTRACT

The very deep neural network has recently been proposed
for speech recognition and achieves significant performance.
It has excellent potential for integration with end-to-end
(E2E) training. Connectionist temporal classification (CTC)
has shown great potential in E2E acoustic modeling. In this
study, we investigate deep architectures and techniques which
are suitable for CTC-based acoustic modeling. We propose a
very deep residual time-delay CTC neural network (VResTD-
CTC). How to select a suitable deep architecture optimized
with the CTC objective function is crucial for obtaining the
state of the art performance. Excellent performances can be
obtained by selecting deep architecture for non-E2E ASR
systems modeling with tied-triphone states. However, these
optimized structures do not guarantee to achieve better or
comparable performances on E2E (e.g., CTC-based) sys-
tems modeling with dynamic acoustic units. For solving this
problem and further leveraging the system performance, we
introduce the vertical-attention mechanism to reweight the
residual blocks at each time step. Speech recognition exper-
iments show our proposed model significantly outperforms
the DNN and LSTM-based (both bidirectional and unidirec-
tional) CTC baseline models.
Index Terms: Speech recognition, acoustic model, connec-
tionist temporal classification (CTC), very deep residual net-
work

1. INTRODUCTION

The connectionist temporal classification (CTC) framework
[1] is an effective end-to-end (E2E) framework [2] for speech
recognition. The CTC modeling technique greatly simplifies
the acoustic modeling pipelines. No frame-level labels or ini-
tial GMM-HMM systems are needed anymore. For training
with large-scale data, this is very convenient. Built on top of
the deep bidirectional long short-term memory (BLSTM) re-
current neural networks, CTC models achieve promising per-
formance on speech recognition tasks [3].

In the speech recognition field, very deep convolutional
networks can significantly outperform [4, 5, 6, 7] conven-

tional DNNs. Recently, very deep residual time-delay neural
networks [8, 9, 10] have been proposed for speech recogni-
tion. Compared to conventional shallow time-delay neural
networks (TDNN) [11, 12] and feedforward sequential mem-
ory networks (FSMN) [13, 14], they can learn longer con-
text dependency without recurrent feedback and thus have
no-latency problem that is associated with bidirectional long
short-term memory (BLSTM) recurrent neural networks. For
this reason, they have excellent potential to be integrated with
end-to-end (E2E) training.

In this study, we integrate a very deep residual time-delay
neural network (VResTD) with CTC training. The very deep
residual structure is used to enhance the conventional TDNN
during CTC training. How to select a suitable deep archi-
tecture optimized with the CTC objective function is crucial
for obtaining the state of the art performance. We observed
excellent performances can be obtained by selecting deep
architecture for non-E2E (e.g., cross-entropy based DNN-
HMM) ASR systems. However, these optimized structures
do not guarantee to achieve better or comparable perfor-
mances on E2E (e.g., CTC-based) systems. In very deep
model like ResNet [15], the skipping connection is proposed
only for avoiding “vanishing gradient problem” when train-
ing, while the importance of each residual block (ResBlock)
for the recognition is not considered. Use of skip connec-
tion in ResNet is effective for static pattern recognition such
as image recognition and speech segment recognition as in
DNN-HMM. In E2E modeling, we need to incorporate a dy-
namic mechanism to consider the importance of the skip con-
nection at each residual block. We propose vertical-attention
mechanism to evaluate the importance of each ResBlock in
which, importance is expressed as attention weights for each
frame when recognition.

The rest of this paper is organized as follows. Section 2
describes our proposed model’s structure. Section 3 presents
experiments. Conclusions and future works are given in Sec-
tion 4.

77978-1-5386-4334-1/18/$31.00 ©2018 IEEE SLT 2018

2. VERY DEEP RESIDUAL TIME-DELAY NEURAL
NETWORK

In this section, we introduce our proposed very deep residual
time-delay neural network (VResTD-CTC). Very deep resid-
ual neural networks were built to enhance the conventional
TDNN in CTC training (Fig. 1). Compared to the existing
cross-entropy trained very deep time-delay neural networks
[8, 9, 10], our proposed model is based on the end-to-end
(E2E) scheme.

Fig. 1. General network architecture of VResTD-CTC

2.1. Operations in a Single Time-delay (TD) Layer

In the VResTD-CTC network, the entire input sequence of
the l-th time-delay hidden layer can be represented as (hl

1,
hl

2, hl
3, ... , hl

T). Any hl
t at time step t has the following

processing pipeline:

hl
t

[W l:bl]−−−−→ h̃l
t

time−delay−−−−−−−−→
subsampling

H̃l
t

memory−−−−−−→
encoding

el
t

ReLU−−−−→ hl+1
t .

First, it is linearly transformed by standard weight matrix
W l and bias bl for layer l:

h̃l
t = W l(hl

t) + bl, (1)

Then a time-delay operation captures a (N l
1+1+N l

2)-
length context H̃l

t at the l-th time-delay hidden layer for
h̃l

t. H̃l
t = (h̃l

t−N l
1
, ..., h̃l

t, ..., h̃
l
t+N l

2
). With subsampling,

H̃l
t ≈ (h̃l

t−N l
1
, h̃l

t, h̃
l
t+N l

2
). N l

1 and N l
2 are the window sizes

of the past and future context (N l
1+1+N l

2 ≤ T). Following
[10], we use symmetric context window (N l

1 = N l
2). We also

slightly tuned the past and future contexts.
The past context (h̃l

t−N l
1
) and future context (h̃l

t+N l
2
) are

encoded with transformations individually and summed up
with current feature (h̃l

t) before activation function.

el
t = al

N l
1
� h̃l

t−N l
1︸ ︷︷ ︸

subsampled−past

+h̃l
t + clN l

2
� h̃l

t+N l
2︸ ︷︷ ︸

subsampled−future

,
(2)

where the encoding weight for the past context is denoted as
al

N l
1

and the encoding weight for the future context is denoted

as cl
N l

2
. Following vFSMN [13, 14], we use vectors instead

of scalers here. � is element-wise multiplication. Our experi-
ments [16, 17] show that the performance would drop dramat-
ically without memory vectors. We also tuned the number of
the vectors and used two vectors, and no benefit was identi-
fied.

hl+1
t =

the l-th layer locates inside of a TDResBlock:

ReLU(el
t)

the l-th layer is the output layer of a TDResBlock:
ReLU(el

t + hresidual
t),

(3)
where hresidual

t is the t-th input frame to the current TDRes-
Block. Suppose the block has 5 layers and the output layer is
l-th layer, hresidual

t is actually hl−4
t .

2.2. Stacked Time-delay (TD) Layers in Residual Net-
work

In the VResTD-CTC network, the TD layers are grouped into
residual blocks that consist of a multi-layer transformation f i

and a short-cut connection bypassing f i. With yi−1
t as input,

the output of the i-th block is recursively defined:

yi
t = f i(y

i−1
t) + yi−1

t , (4)

where f i is a sequence of TD layers and Rectified Linear
Units (ReLUs).

These residual blocks that are stacked together behave like
ensemble networks [18]. For the proposed network, every
output of the last residual block also dynamically includes
the outputs of other residual blocks over time. Taking a three-
block VResTD-CTC model, for example, the output of the
last residual block at time-step t (y3

t) can be expressed:

y3
t = y0

t + f1(y0
t)︸ ︷︷ ︸

1st−block

+f2(y0
t + f1(y0

t))︸ ︷︷ ︸
2nd−block

+ f3(y0
t + f1(y0

t) + f2(y0
t + f1(y0

t)))︸ ︷︷ ︸
3rd−block

.

(5)

This dynamic nature inspired our proposed method for
improving the current model in the next section.

2.3. Reweighting the Paths of a Residual Block with At-
tention Module

The attention-based end-to-end (E2E) framework has been
successfully applied to the speech recognition field [19, 20,
21]. For more generalized network structures (non-recurrent

78

networks), feedforward attention [22] and self-attention [23]
have been proposed. These techniques have also enhanced
time-delay neural networks [14, 24].

Compared to these previous works, we propose an atten-
tion mechanism to improve the structure of the proposed very
deep model. We insert the attention modules into an already
trained very deep network and retrain the whole network. The
skipping connection was proposed only for avoiding “vanish-
ing gradient problem”, and does not consider the importance
of each ResBlock for the recognition. On the other hand, the
attention mechanism can evaluate the importance of each Res-
Block for the recognition and can express the importance as
attention weights.

Fig. 2. Attention modules inserted into i-th time-delay resid-
ual block

Fig. 3. Attention scores reweights the path inside a very deep
residual time-delay network

As shown in Fig. 2 and Fig. 3, the attention module is set
after the output layer of every residual block. We use the
attention scores αi

t to reweight the paths of a residual block.

αi
t =

 1− αi
t

αi
t

T

, (6)

where αi
t is a scale factor for the data at time-step t passing

through the short-cut path of the i-th block, and the 1− αi
t is

the scale factor for the TD layer stackings correspondingly.
The TD layer stackings f i(y

i−1
t) and short-cut path yi−1

t

in Eq. 4 is reweighted:

yi
t = (1− αi

t) · f i(y
i−1
t) + αi

t · yi−1
t , (7)

The reweight factors estimated by the block-wise atten-
tion modules are defined as follows:

αi
t = Softmax

 U i · f i(y
i−1
t)

V i · yi−1
t

 + bi

, (8)

where U i, V i, and bi are trainable parameters.
We can fix the parameters of the trained model and only

retrain the attention modules with the small dataset. The at-
tention scale factors over an evaluation set can show the in-
formation of the inner paths of this residual block. Figure 4
illustrates the attention scores of the short-cut paths in a resid-
ual block (the first block from the seed model in Section 3.3)
on a single utterance in one evaluation set (Section 3.1). The
voice activities show different behaviors when they pass the
first block in these two systems. For the syllable-based sys-
tem, the voice segments tended to go through the short-cut,
while the phone-based system had no such obvious inclina-
tions. The averaged scores over this evaluation set are 0.6 for
the voice segments and 0.36 for the blanks, while a phone-
based system has much smaller scores for them.

Fig. 4. Attention scores of short-cut paths from a residual
block (verified by two systems)

79

3. EXPERIMENTS

3.1. Data and Task Descriptions

In this paper, we tested our proposed method on the “Corpus
of Spontaneous Japanese” (CSJ) [25] with its 240-hour lec-
ture recordings as the training set (CSJ-Train), based on the
benchmarks [26, 27]. We used three official evaluation sets,
(CSJ-Eval01, CSJ-Eval02, and CSJ-Eval03), each of which
contained ten lecture recordings [27], to evaluate the speech
recognition results. Ten lecture recordings were chosen for
validation (CSJ-Dev) during training. We also selected 27.6-
hour training data from CSJ (CSJ-Trainsmall) to train the seed
models for warm-start initialization [28] and tuning parame-
ters.

Table 1. CSJ Data Sets
#Lectures Hours

Training set CSJ-Trainsmall 155 27.6
CSJ-Train 957 240

Development set (CSJ-Dev) 10 2.0
CSJ-Eval01 10 2.0

Testing set CSJ-Eval02 10 2.1
CSJ-Eval03 10 1.4

3.2. Baseline Descriptions

We trained the baseline models using CSJ-Train. To start
the first baseline model (DNN-HMM-CE), we first trained
a GMM-HMM model, followed by a DNN model with five
hidden layers, each of which is comprised of 2048 hidden
nodes. The output layer has about 8500 nodes that correspond
to the tied-triphone states of the GMM-HMM model. We
used the following 72-dim filter-bank features (24-dim static
+∆ +∆∆): mean and variance normalized per speaker and
11 spliced frames (five left, current, five right). The DNN
model was trained using the standard stochastic gradient de-
scent (SGD) based on the cross-entropy (CE) loss criterion.
All were implemented using the Kaldi toolkit (nnet1) [29, 26].

We trained the baseline CTC models with similar parame-
ter sizes of DNN-HMM-CE models using the EESEN toolkit
[3]. The BLSTM-CTC baseline model (BLSTM-CTC) was
trained with the same 72-dimensional filter-bank features (24-
dim static +∆ +∆∆). The right context of the feature is
one frame, and the left context is also one frame. Since the
syllable-based system performs better than the context inde-
pendent (CI) phone-based system as reported in [30], we use
263 Japanese syllables (Kana, the basic unit of the Japanese
language writing system), one non-spoken noise, one spoken
noise and one blank (φ) as the basic acoustic modeling unit.
The BLSTM network has six hidden layers, each of which is
composed of 512 nodes. The third baseline model is a unidi-
rectional LSTM CTC model (ULSTM-CTC) with the same
parameter size as the BLSTM-CTC (five hidden layers, each

composed of 1024 nodes). The right context of the feature
is eight frames, and the left context is a zero frame. The sub-
sampling numbers of both systems are set to three. We choose
this setting for making the real-time factor (RTF) around 0.3.
We did not follow the settings of syllable-based BLSTM-CTC
systems in [30], because these previously trained systems are
too slow and cannot be used in our Sprintra WFST decoder
[31].

For decoding, we trained a 4-gram word language model
(WLM) from the transcription of 591-hours of CSJ training
data. The WLM’s vocabulary size was 98K. We compiled
WFST-based decoding graphs for these models. The CTC-
based models were decoded on EESEN decoder [3] and the
WFST-based decoding graph normalized using a subword
FST [32]. The performances are shown in Section 3.5.

3.3. Settings for Training Proposed VResTD-CTC

We built a set of prototype networks (tuned using a 29 con-
text independent (CI) phone-based seed system trained on
CSJ-Trainsmall) and selected a best 26-layer structure using an
evaluation set (CSJ-Dev) shown in Table 2.

Table 2. Network structure: all layers are connected with
ReLU activations, and past and future memories are stored in
two global [1024×1] vectors. The residual-skips use linear
projections for dimensional matching.

Component Structure #Para.
(ordered in seq.) (26 FC layers) (35.9M)
Input 72-dim filter-bank features

(24-dim static+∆+∆∆)
ResBlock 1 3 FC layers Residual-skip 8.3M

[72×2048] [72×2048]
[2048×2048]
[2048×2048]

ResBlock 2 3 FC layers Residual-skip 4.5M
[2048×128] [2048×2048]
[128×128]
[128×2048]

ResBlock 3 3 FC layers Residual-skip 2.6M
[2048×128] [2048×1024]
[128×128]
[128×1024]

TDResBlock 1 (?) 5 Time-delay layers Residual-skip 6.0M
[1024×1024]×5 [1024×1024]

TDResBlock 2 (?) 5 Time-delay layers Residual-skip 6.0M
[1024×1024]×5 [1024×1024]

TDResBlock 3 (?) 5 Time-delay layers Residual-skip 6.0M
[1024×1024]×5 [1024×1024]

Fully-connect 2 FC layers 2.5M
[1024×2048]

[2048×output-dim]
Output softmax
(?) means the residual block where we insert vertical-attention module.

The network has two parts as shown in Table 2.

1. Three residual blocks ResBlocks (ResBlock): Each
ResBlock has three FC layers connected with activa-
tions and a residual-skip. No time-delay operation is
used. The stacked ResBlocks are located close to the

80

input layer and transform the speech feature to a higher
level representation (Table 2).

2. Three time-delay residual blocks (TDResBlock): Each
TDResBlock with five FC layers and five time-delay
operations (bidirectional). Two global memory blocks
(past and future) encode the output signal after every
time-delay operation (see Eq.2). The residual connec-
tion passes the frame of the current time-step across five
layers (Table 2). The windows for stacked time-delay
operations are shown in Table 3.

Table 3. Stacked time-delay operations in residual blocks
1st Block 2nd Block 3rd Block
{−1, 0, +1} {−6, 0, +6} {−11, 0, +11}
{−2, 0, +2} {−7, 0, +7} {−12, 0, +12}
{−3, 0, +3} {−8, 0, +8} {−13, 0, +13}
{−4, 0, +4} {−9, 0, +9} {−14, 0, +14}
{−5, 0, +5} {−10, 0, +10} {−15, 0, +15}

The proposed CTC model (VResTD-CTC) is trained
with CNTK [33] and 72-dim non-spliced filter-bank features
(24-dim static +∆ +∆∆). We trained the seed model with
a 27.6-hour CSJ-Trainsmall with the CTC loss criterion and
used the model parameters to initialize the CTC models. The
FsAdaGrad algorithm (an implementation of Adam [34])
was used during the CTC training. To speed up the training
with the 240-hour training data (CSJ-Train), we used the
block-wise model update filtering (BMUF) distributed train-
ing algorithm [35] on four Tesla K40m GPUs. The initial
learning rate for each frame was 0.00001 and was automati-
cally adjusted using validation on CSJ-Dev. The mini-batch
size was 2048. The number of parallel sequences in the same
mini-batch was 16, and the maximum epoch number was
25. The CTC model was decoded by feeding the scaled log-
likelihood output of the network to the EESEN decoder [3].
We modified the decoding graph normalized using a subword
FST [32] (We select 1-gram and 0.9 as the weight factor by
grid search). The detailed settings were also described in our
previous work [16, 17].

We also trained a cross-entropy model (VResTD-CE)
with the same structure and feature settings using CNTK.
The label is the same with the DNN-HMM-CE system.

3.4. Adding Attention Modules to the Network Structure

We inserted the proposed attention module into every time-
delay residual block (TDResBlock) of the previously trained
VResTD-CTC. Then we trained the whole network with
CSJ-Train. The initial learning rate is 0.00001. The mini-
batch size is set to 2048. We checked the performance on
CSJ-Dev after every epoch and stopped the training at the 17-
th epoch before the performance started to drop.

We also apply self-attention mechanism [24] to reweight
the H̃j

t ≈ (h̃j

t−N l
1
, h̃j

t , h̃
j

t+N l
2
) of the j-th TD layer (see Eq.2

in last subsection). The H̃j
t is reweighted using the attention

scores αj
t = (αj

t−N l
1
, αj

t , α
j

t+N l
2
).

H̃ ′ j

t = (αj

t−N l
1
· h̃j

t−Nj
1
, αj

t · h̃
j
t , α

j

t+N l
2
· h̃j

t+Nj
2
) (9)

where the H̃ ′ j

t is the reweighted result. It will be processed
in the same way as Eq.3. The αj

t is generated as follows:

αj
t = Attention(H̃j

t , ..., H̃
l
t) (10)

where Attention(·) is a single layer MLP network with a
softmax output. We use the cached feedforward outputs of
a set of layers (H̃j

t , ..., H̃
l
t) to calculate the attention scores

similar to the multi-head attention [24]. We found using out-
put of two successive layers at the begining of the first TDRes-
Block can save the training time and achieve the best perfor-
mance.

We call this “horizontal-attention (hAtt)” and name our
proposed attention “vertical-attention (vAtt)”. The training
setting is same with the vertical-attention.

3.5. Performances of Speech Recognition

We evaluated the performance of the proposed CTC-based
models (the VResTD-CTC with either kind of attention and
without attention) on three CSJ evaluation sets and com-
pared the results with the baseline systems introduced in
Section 3.1 (DNN-HMM-CE, BLSTM/ULSTM-CTC and
VResTD-CE).

Table 4. ASR performance (WER%) of acoustic models with
proposed neural network structures compared with baselines

Network (#Para. approx.) WER%
Eval 01 Eval 02 Eval 03 Ave.

DNN-HMM-CE (38M) 14.4 11.8 15.6 13.9
BLSTM-CTC (33M) 13.9 11.6 15.8 13.8
ULSTM-CTC (38M) 14.5 12.1 16.7 14.4
VResTD-CE (51M) 13.9 11.2 15.2 13.4
VResTD-CTC w/o Att (36M) 18.0 16.2 17.8 17.3
VResTD-CTC w/ hAtt (36M) 14.2 12.5 15.1 14.1
VResTD-CTC w/ vAtt (36M) 13.8 11.0 14.2 13.0

The results compared to the proposed method (VResTD-CTC w/ vAtt) with-
out statistical significance (from two-tailed t-test at significant level of p-
value < 0.05) are shown in bold fonts.

From Table 4, the VResTD-CE outperforms the DNN
baseline (DNN-HMM-CE) verified the effectiveness of the
proposed very deep structure.

However, the syllable-based VResTD-CTC model cannot
work well, compared to the baseline systems in Table 4 and
the phone-based VResTD-CTC model in Table 5. We look

81

into the problem by breaking down the insertion rate from the
WER% as shown in Table 5. The WER% increases are mainly
associated with the increased insertion errors. Since syllable
unit is more dynamic and longer than the phone unit, blank
tokens will be wrongly inserted inside the syllable unit. The
structure difference caused such performance gaps between
TDNN (including our model) and BLSTM models. Every
TDNN layer is only fed with the past and future contexts from
its lower layers, while BLSTM can also get feedback from
its current layer. This result also suggests the VResTD-CTC
model still has room for improvement.

Table 5. Word Error Rate (WER%) and Insertion Rate (Ins%)
of VResTD-CTC models with different acoustic units

System WER% (Ins%)
Eval 01 Eval 02 Eval 03 Ave.

phone-based 15.1 (1.4) 12.0 (1.4) 14.5 (1.4) 13.9 (1.4)
syllable-based 18.0 (3.6) 16.2 (3.9) 17.8 (3.5) 17.3 (3.7)

From Table 4, we find both of the attention methods (vAtt
and hAtt) can improve the VResTD-CTC model. This re-
sult is reasonable, because the attention mechanisms (vAtt
and hAtt) can capture the feedbacks from current layer and
improves the TDNN layer. Compared with the hAtt, the
VResTD-CTC with vAtt can significantly outperform the
DNN-HMM-CE baseline. The VResTD-CTC with vAtt can
also outperform BLSTM/ULSTM-CTC and VResTD-CE on
averaged word error rate (WER%), while the improvement
from the hAtt is very limited. The VResTD-CTC with hAtt
only works better than the ULSTM-CTC.

Concerning the decoding speed, we tested the real-time
factors (RTFs) of the above models. The parameter size of the
proposed very deep model is similar with the baseline mod-
els (except VResTD-CE, which is much larger). The decod-
ing is applied to the same workstation without sharing with
other jobs, and the feedforward pass and decoding are all
calculated into RTFs. Compared with the DNN-HMM-CE
(RTF=0.70) and VResTD-CE models (RTF=0.74), the speed
of proposed VResTD-CTC (w/ vAtt) is 0.22 on RTF, which
matches the 3x faster results reported in [3]. It is compara-
ble to the ULSTM-CTC model (RTF=0.28) and faster than
the BLSTM-CTC model (RTF=0.4) even with much deeper
layers.

4. CONCLUSIONS AND FUTURE WORKS

In this study, we investigate deep architectures and techniques
which is suitable for CTC-based acoustic model training.
The proposed very deep residual time-delay neural network
(VResTD) with attention mechanism can be integrated with
CTC training and significantly outperform the DNN-HMM-
CE and LSTM-based CTC models (both bidirectional and
unidirectional). In the future, we will further improve this

deep structure.

5. ACKNOWLEDGEMENTS

The authors thank Naoyuki Kanda who developed the con-
crete baseline systems (especially the decoding method) and
Mitsuyoshi Tachimori for discussing about CTC-based de-
coding.

6. REFERENCES

[1] A. Graves, S. Fernandez, F. Gomez, and J. Shmidhuber, “Con-
nectionist temporal classification: labelling unsegmented se-
quence data with recurrent neural networks,” in Proc. ICML,
2006.

[2] A. Graves and N. Jaitly, “Towards End-to-End speech recog-
nition with recurrent neural networks,” in Proc. ICML, 2014.

[3] Y. Miao, M. Gowayyed, and F. Metze, “EESEN: End-to-End
speech recognition using deep RNN models and WFST-based
decoding,” in Proc. IEEE-ASRU, 2015, pp. 167–174.

[4] M. Bi, Y. Qian, and K. Yu, “Very deep convolutional neural
networks for LVCSR,” in Proc. INTERSPEECH, 2015.

[5] Y. Qian and et al., “Very deep convolutional neural networks
for noise robust speech recognition,” IEEE/ACM Trans. ASLP,
vol. 24, no. 12, pp. 2263–2276, 2016.

[6] Y. Zhang, W. Chan, and N. Jaitly, “Very deep convolutional
networks for end-to-end speech recognition,” in Proc. IEEE-
ICASSP, 2017.

[7] D. Yu, W. Xiong, J. Droppo, A. Stolcke, G. Ye, J. Li, and
G. Zweig, “Deep convolutional neural networks with layer-
wise context expansion and attention,” in Proc. INTER-
SPEECH, 2016.

[8] S. Zhang, M. Li, Z. Yan, and L. Dai, “Deep-FSMN for large
vocaburary continuous speech recognition,” in arXiv preprint
(accepted for ICASSP2018) arxiv:1803.05030, 2018.

[9] F. L. Kreyssig, C. Zhang, and P. C. Woodland, “Im-
proved tdnns using deep kernels and frequency dependent
grid-rnns,” in arXiv preprint (accepted for ICASSP2018)
arxiv:1802.06412, 2018.

[10] M. Baskar and et al., “Residual memory networks: Feed-
forward approach to learn long-term temporal dependencies,”
in Proc. IEEE-ICASSP, 2017.

[11] A. Waibel, T. Hanazawa, G. Hinton, K. Shikano, and K. Lang,
“Phoneme recognition using time-delay neural networks,”
IEEE/ACM Trans. ASLP, vol. 37, no. 3, pp. 328–339, 1989.

[12] V. Peddinti, D. Povey, and S. Khudanpur, “A time delay neural
network architecture for efficient modeling of long temporal
contexts,” in Proc. INTERSPEECH, 2015.

[13] S. Zhang, C. Liu, H. Jiang, S. Wei, L. Dai, and Y. Hu, “Feed-
forward sequential memory networks: A new structure to learn
long-term dependency,” in arXiv preprint arxiv:1512.08301,
2015.

[14] J. Tang, S. Zhang, S. Wei, and L. Dai, “Future context atten-
tion for unidirectional LSTM based acoustic model,” in Proc.
INTERSPEECH, 2016.

82

[15] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learn-
ing for image recognition,” in Proc. the IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), 2016, pp.
770–778.

[16] S. Li, X. Lu, R.Takashima, P. Shen, and H. Kawai, “Improv-
ing CTC-based acoustic model with very deep residual neural
network,” in Meeting of Acoustical Society of Japan, Spring,
2018.

[17] S. Li, X. Lu, R.Takashima, P. Shen, and H. Kawai, “Improv-
ing CTC-based acoustic model with very deep residual neural
network,” in Proc. INTERSPEECH, 2018.

[18] A. Veit, M. Wilber, and S. Belongie, “Residual networks be-
have like ensembles of relatively shallow networks,” in Proc.
NIPS, 2016, pp. 550–558.

[19] J. Chorowski, D. Bahdanau, D. Serdyuk, K. Cho, and Y. Ben-
gio, “Attention-based models for speech recognition,” in NIPS,
2015.

[20] W. Chan, N. Jaitly, Q. Le, and O. Vinyals, “Listen, attend and
spell: A neural network for large vocabulary conversational
speech recognition,” in Proc. IEEE-ICASSP, 2016.

[21] T. Hori, S. Watanabe, Y. Zhang, and W. Chan, “Advances
in joint CTC-Attention based End-to-End speech recognition
with a deep CNN Encoder and RNN-LM,” in Proc. INTER-
SPEECH, 2017.

[22] C. Raffel and D.P.W. Ellis, “Feed-forward networks with at-
tention can solve some long-term memory problems,” in arXiv
preprint arXiv:1512.08756, 2016.

[23] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones,
A. N. Gomez, L. Kaiser, and I. Polosukhin, “Attention is all
you need,” in Proc. NIPS, 2017.

[24] Daniel Povey, Hossein Hadian, Pegah Ghahremani, Ke Li, and
Sanjeev Khudanpur, “A time-restricted self-attention layer for
asr,” in IEEE-ICASSP (accepted), 2018.

[25] K. Maekawa, “Corpus of spontaneous japanese: Its design and
evaluation,” in Proc. ISCA & IEEE Workshop on Spontaneous
Speech Processing and Recognition, 2003.

[26] T. Moriya, T. Shinozaki, and S. Watanabe, “Kaldi recipe for
Japanese spontaneous speech recognition and its evaluation,”
in Autumn Meeting of ASJ, 2015, number 3-Q-7.

[27] T. Kawahara, H. Nanjo, T. Shinozaki, and S. Furui, “Bench-
mark test for speech recognition using the corpus of sponta-
neous japanese,” in Proc. ISCA & IEEE Workshop on Sponta-
neous Speech Processing and Recognition, 2003.

[28] J. Dean and et al., “Large scale distributed deep networks,” in
Proc. NIPS, 2012.

[29] D. Povey and et al., “The Kaldi speech recognition toolkit,” in
Proc. IEEE-ASRU, 2011.

[30] N. Kanda, X. Lu, and H. Kawai, “Maximum-a-Posteriori-
based decoding for End-to-End acoustic models,” IEEE/ACM
Trans. ASLP, vol. 25, no. 5, pp. 1023–1034, 2017.

[31] P.R. Dixon, C. Hori, and H. Kashioka, “Development of the
SprinTra WFST speech decoder,” NICT Research Journal, pp.
15–20, 2012.

[32] N. Kanda, X. Lu, and H. Kawai, “Maximum a posteriori based
decoding for CTC acoustic models,” in Proc. INTERSPEECH,
2016, pp. 1868–1872.

[33] A. Agarwal and et al., “An introduction to computational net-
works and the computational network toolkit,” in Microsoft
Technical Report MSR-TR-2014-112, 2014.

[34] D. Kingma and J. Ba, “Adam: A method for stochastic opti-
mization,” in Proc. ICLR, 2015.

[35] K. Chen and Q. Huo, “Scalable training of deep learning ma-
chines by incremental block training with intra-block parallel
optimization and blockwise model-update filtering,” in Proc.
IEEE-ICASSP, 2016.

83

