
MOS-FAD: IMPROVING FAKE AUDIO DETECTION VIA AUTOMATIC MEAN OPINION
SCORE PREDICTION

Wangjin Zhou1, Zhengdong Yang1, Chenhui Chu1, Sheng Li2, Raj Dabre2, Yi Zhao3, Kawahara Tatsuya1

1Graduate School of Informatics, Kyoto University, Sakyo-ku, Kyoto, Japan
2National Institute of Information and Communications Technology (NICT), Kyoto, Japan

3Kuaishou Technology, Beijing, China

ABSTRACT
Automatic Mean Opinion Score (MOS) prediction is employed to
evaluate the quality of synthetic speech. This study extends the
application of predicted MOS to the task of Fake Audio Detection
(FAD) as we expect that MOS can be used to assess how close syn-
thesized speech is to the natural human voice. We propose MOS-
FAD, where MOS can be leveraged at two key points in FAD: train-
ing data selection and model fusion. In training data selection, we
demonstrate that MOS enables effective filtering of samples from
unbalanced datasets. In the model fusion, our results demonstrate
that incorporating MOS as a gating mechanism in FAD model fu-
sion enhances overall performance.

Index Terms— MOS prediction, self-supervised learned (SSL)
model, model fusion, fake audio detection (FAD)

1. INTRODUCTION

Recent developments in text-to-speech (TTS) [1, 2, 3, 4] and voice
conversion (VC) [5] have made it feasible to create a human-like
speech, which could be misused for malevolent purposes such as
spoofing attacks. As a countermeasure, there is a growing emphasis
on fake audio detection (FAD), which aims to distinguish fake audio
from real audio [6, 7, 8, 9, 10, 11].

Efforts for FAD tasks have focused on enhancing the acous-
tic front end to improve the effectiveness of FAD systems. Re-
search has shown that well-designed acoustic features can effec-
tively distinguish fake audio from real audio [12, 13, 14, 15]. Con-
currently, there are also studies concentrated on designing effective
classification models to distinguish between real and fake audios
[16, 17, 18, 19, 20, 21, 22, 14, 15].

Unlike the approach mentioned earlier, our core idea is to im-
prove fake audio detection by leveraging external knowledge. Con-
sidering that MOS (Mean Opinion Score) is used to assess the qual-
ity of synthesized speech, MOS will be promising tool for detecting
fake audio. Moreover, compared to the binary classification of fake
audio detection, MOS offers a finer-grained evaluation criterion that
can yield additional information.

In this paper, we adopt the self-supervised learning (SSL) mod-
els [23], widely studied and performed well in various speech classi-
fication tasks [24], as the foundational architecture for constructing
the FAD classifier. To ensure the robustness of our final results and
reduce dependence on the performance of a single SSL model, we
conduct experiments with various SSL models. Building upon this
SSL-based architecture, we explore the integration of MOS scores
into FAD tasks through various methods. This investigation ulti-
mately leads to the development of our innovative MOS-FAD frame-
work, where MOS scores are used as gating mechanisms in model

construction. This framework has achieved state-of-the-art perfor-
mance.

We also extend the use of MOS scores to guide the selection of
training data. This approach addresses two key challenges: Firstly,
it alleviates the long-tail issue associated with imbalanced training
data. Secondly, by utilizing MOS scores for data selection, the
model can be trained on samples that pose a greater challenge in
distinguishing between real and fake audio, ultimately enhancing
the model’s classification capabilities.

2. RELATED WORK

2.1. Automatic MOS Predictor

The Mean Opinion Score (MOS) [25] is a widely used subjective
quality evaluation criterion for synthesized speech. In MOS assess-
ments, listeners rate speech sample quality on a scale ranging from 1
(poor) to 5 (excellent). The average of these ratings is used to gauge
overall speech quality. However, traditional MOS evaluations can be
expensive and time-consuming.

Given these challenges, there has been a growing interest in
training automatic MOS predictors. Notably, the VoiceMOS Chal-
lenge [26] has played a pivotal role in advancing this field in recent
years.

The state-of-the-art automatic MOS predictors employ neural
network-based frameworks and use large-scale synthetic speech data
for training a model to predict MOS score [27, 28, 29, 30, 31, 32].
Another solution is to introduce self-supervised learning (SSL) mod-
els [22, 33, 34, 33, 35], which have already been demonstrated in the
MOS prediction task. Since the choice of data and various model
configurations used for pre-training will affect the performance, fus-
ing diverse models with different architectures or training strategies
[32, 31] could help achieve better results on the MOS prediction task.

2.2. Fake Audio Detection

The current FAD research focuses on acoustic front-end and classi-
fication models.

Research has shown that well-designed acoustic features can
effectively distinguish fake audio from real audio. The traditional
Mel frequency spectrum coefficients (MFCC) were improved by us-
ing constant Q-transform instead of the short-time Fourier transform
[12]. The linear frequency spectrum coefficients (LFCC) [13] was
proposed to replace the Mel-scale filters with linear filters, making it
more focused on high-frequency band features. Wav2vec pre-trained
models [14, 15] were used as the feature extractors, which obtain
more robust acoustic features.
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Fig. 1. Proposed model structure.

An effective classification model can also help distinguish be-
tween real and fake audio. With the development of deep neural
networks, the classifier has been upgraded from convolutional neural
networks (CNN) [16, 17], light convolution neural network (LCNN)
[18], residual network (ResNet) [19], differentiable architecture
search (DARTS) [20, 21] to state-of-the-art Transformer-based
models, e.g., Wav2vec2.0 [22, 14, 15].

3. PROPOSED APPROACH

As illustrated in Fig. 1.(a), our proposed method consists of three
components: SSL-FADs, Fused SSL-MOS sub-system, and MOS-
FAD Fusion. In this section, we introduce each of them, respectively.

3.1. SSL-FAD

SSL-FADs are SSL-based models that predict FAD scores. This
work adopts the idea in [30], which adds a mean pooling layer and
a fully connected layer after the feature extractor of an SSL model
to construct an SSL-FAD model. In this paper, we adopt 7 different
SSL models (Wav2Vec 2.0 Base, Wav2Vec 2.0 Large, Wav2Vec 2.0
(LV-60), HuBERT Base, WavLM Base, WavLM Base+ and WavLM
Large) to construct 7 SSL-FADs, as shown in Table 2. By n SSL-
FADs, FAD scores Y = {yi | yi ∈ [0, 1], i = 1, 2, . . . , n} are
computed.

3.2. Fused SSL-MOS

The fused SSL-MOS is an automatic MOS predictor proposed in
[31], which consists of several SSL-MOS models and a MOS fu-
sion. Similar to SSL-FAD, SSL-MOS is constructed by adding a
mean pooling layer and a fully connected layer after the feature ex-
tractor of the SSL model. The SSL models employed in construct-
ing SSL-MOSs are identical to those used in constructing SSL-FAD.
The MOS model fuser is a 2-layer neural network consisting of a
fully connected layer without a bias for capturing the weighted in-
formation, and a linear function for obtaining the residual informa-
tion between the ground truth and the predicted scores after a fully
connected layer. The MOS fusion takes the MOS scores Z = {zi |
zi ∈ [0, 5], i = 1, 2, . . . , n} predicted by n SSL-MOS models as
inputs and outputs the final MOS score zf ∈ [0, 5].

3.3. MOS-FAD Fusion

The MOS-FAD fusion performs the fusion of FAD scores predicted
by the SSL-FADs and the MOS scores predicted by the Fused SSL-
MOS. It outputs the prediction yf ∈ [0, 1] for the FAD task.

We conducted experiments using both Multi-Layer Perceptron
(MLP) and LightGBM [36] as potential candidates for MOS-FAD.
Through a comparative analysis of their performance, we concluded
that MOS can be effectively employed as a gating mechanism within
the fusion model. Building upon this insight, we introduced Gated
MLP, as depicted in Fig.1(b.1). Moreover, to further leverage the
prior information from MOS scores, the Fusion with thresholding is
proposed, as shown in Fig.1(b.2).
a. MLP: In our experiment, the MLP is a two-layer neural network
with one sigmoid activation function and three hidden neurons. The
linear transformation in the first layer is performed without a bias.
b. LightGBM: Light Gradient Boosting Machine (LightGBM) [36]
is an ensemble model that trains a series of decision trees sequen-
tially in a leaf-wise fashion and combines them. During sequen-
tial training, the decision trees use the error from the previous tree
to adjust their learning and eventually minimize the loss function.
Therefore, weak learners of the decision trees can be combined as a
high-performance model.
c. Gated MLP: Instead of feeding all the predicted scores (FAD
scores and MOS scores) to the MLP, we design a special gate layer
for the predicted MOS score. The gates control how much informa-
tion from the FAD scores should be fed to the later MLP. The first
step is to decode the MOS scores into a tensor of the same length as
the FAD scores using a Linear Decoder layer. Then, the values in
this tensor are normalized to the range of 0 to 1 using a Sigmoid
activation function. These outputs are treated as gate g. Then, pre-
dicted FAD scores y1, y2 ... are pointwisely multiplied by g, and the
results are used as inputs to the MLP. The MLP component in Gated
MLP remains consistent with the description provided in 3.3.a.
d. Fusion with Thresholding: Building upon the definition of MOS
scores, we introduce a straightforward screening mechanism named
as ‘fusion with thresholding’. The underlying concept is to cate-
gorize samples with excessively low MOS scores as fake audio and
those with excessively high MOS scores as genuine audio. We assign
a score of 0 to samples with MOS scores below the threshold M1,
designating them as fake speech, and assign a score of 1 to samples
with MOS scores above the threshold M2 as real speech. For the re-
maining samples, FAD scores are determined based on the outcomes
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Fig. 2. Training process of our proposed model.

of specific fusion models. It is worth highlighting that this fusion
with thresholding approach is applicable to any FAD model. In our
experiments, all fake speech of training and validation datasets re-
ceived MOS scores below 4.0, while 98.81% of real speech received
MOS scores above 2.5. Consequently, we set the threshold values as
M1 = 2.5 and M2 = 4.0.

4. EXPERIMENT

4.1. Datasets

a. VoiceMOS dataset: We used the VoiceMOS Challenge 2022
[26] main track dataset for training automatic MOS predictor. The
main track data contains only English and consists of 4, 974 samples
for training, 1, 066 samples for validation, and 1, 066 examples for
testing. We quantized the main track’s MOS scores ranging from 1
to 5 into 33 intervals with a step of 0.125.
b. ASVspoof dataset: ASVspoof datasets were leveraged for the
FAD task. First, we utilized the training and validation datasets from
the ASVspoof2019 [9] LA dataset to train our proposed framework.
Next, we employed the ASVSpoof2021 challenge [8] evaluation set
of the DF track to evaluate the effectiveness of our approach. This
DF evaluation set comprises a total of 611, 829 samples. It shows
audio coding and compression artifacts, with approximately 600k of
audio processing with various commercial audio codecs.

4.2. Experimental Settings

All neural network models were trained using a fixed learning
rate of 0.001, Stochastic Gradient Descent as the optimizer, and
CrossEntropy as the loss function. Training would stop if there
was no decrease in the validation loss for 20 consecutive epochs.
During the training of LightGBM, the following parameter con-
figuration was employed: {‘objective’: ‘binary’, ‘metric’: ‘auc’,
‘num leaves’: 16, ‘max bin’: 25, ‘max depth’: 4, ‘learning rate’:
0.1} .
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Table 1. The number of samples of ASVspoof2019 LA Track with
or without the data-filter. With the data-filter we select data by
choosing data with MOS scores ranging between 3.0 and 4.0.

Training Dataset Validation Dataset
Total Real Fake Total Real Fake

w/o filter 25,380 2,580 22,800 22,438 2,548 22,438
w/ filter 5,034 2,568 2,466 5,198 2,533 2665

4.3. Training Process

Fig. 2 shows the training details of our proposed approach. The train-
ing process can be divided into two independent modules, the Auto-
matic MOS Predictor Training Process and the MOS-FAD Training
Process, and an additional data processing module, the MOS-based
data-filter, for the FAD task training dataset.

a. Automatic MOS Predictor Training Process: As depicted in
the green block in Fig. 2, we employed the MOS fusion model, as
described in Section 3.2, to generate MOS scores. This model un-
dergoes training using the VoiceMos Challenge 2022 Main Track
dataset. It is important to note that this training process is conducted
separately from the MOS-FAD training process, and the training
specifics for SSL-MOS closely adhere to those detailed in [31].

b. MOS-based Data-Filter: The MOS-based data-filter serves as
a selector for training FAD task models, with two primary objec-
tives. Firstly, it aims to alleviate the issue of sample imbalance, as
evident in Table 1, where the original training set exhibits a sig-
nificant imbalance, with nearly ten times more fake speeches than
real ones. Secondly, it enhances model training effectiveness, as
illustrated in Fig. 3. The distribution of MOS scores in the LA
track dataset suggests that samples with MOS scores below 2.5 can
be confidently categorized as fake, while those with scores exceed-
ing 4.0 can be considered as real. Consequently, the FAD model
only requires training on data that falls within the range of uncer-
tainty (overlap part in the MOS distribution graph) regarding its au-
thenticity. In summary, to achieve a balanced sample distribution
and enhance training effectiveness, we opted for samples from the
ASVspoof2019 LA dataset with MOS scores between 3.0 and 4.0 as
the new training and validation datasets for the FAD task. As de-
picted in Table 1, this filtering approach results in an approximate
balance between real and fake speeches.

c. MOS-FAD Training Process: We used the filtered dataset to
finetune SSL-FADs and train their fusions (FAD Fusion and MOS-
FAD Fusion) for FAD tasks (as shown in Fig. 2). The MOS-FAD
Fusion in Fig. 2 represents a model fusion approach that combines
both MOS scores and FAD scores. Concurrently, The FAD Fusion
in Fig. 2 serves as a control group, enabling us to evaluate the im-
portance of incorporating MOS scores into the fusion model.
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Table 2. EER on 7 FAD scores of ASVSpoof2021 DF Eval Track
by each SSL-FAD which trained with or without MOS Data-Filter.

DF Eval
SSL Base w/ filter w/o filter
W2V Base 0.2514 0.5510

HuBERT Base 0.2353 0.4449
W2V large 0.1891 0.4794

W2V Large(LV-6.0) 0.2395 0.3776
WavLM Base 0.2167 0.5126

WavLM Base+ 0.2088 0.5310
WavLM Large 0.2453 0.5881

4.4. Inference

To assess the authenticity of samples in the ASVspoof2021 DF eval-
uation set, we first employ the Fused SSL-MOS system to generate
its MOS scores. Concurrently, we use individual SSL-FAD systems
to derive the corresponding FAD scores. Subsequently, the MOS-
FAD Fusion process combines these FAD and MOS scores to yield
a unified score for each sample. It’s important to note that a lower
fused score indicates a higher likelihood that the sample is fake.

5. RESULTS AND ANALYSIS

5.1. Effectiveness of MOS-based Data-Filter

We conducted experiments by training SSL-FADs directly using the
original training dataset and compared their performance with mod-
els trained on the filtered dataset, as displayed in Table 2. The results
demonstrate that models trained after data filtering outperform those
trained on the unfiltered dataset, indicating the effectiveness of fil-
tered data in training.

5.2. Effect of MOS in Fusion

Table 3 shows the performance of different fusion models. Among
them, the ‘Score Fusion’ investigates how to combine 7 different
FAD scores and 1 of MOS scores, while the ‘Embedding Fusion’
validates the effectiveness of ‘Score Fusion’.
a. Score Fusion: Only using FAD scores, both FAD Fusion meth-
ods fail to outperform the Wav2Vec Large-based SSL-FAD model.
This could be attributed to the high correlations among FAD scores,
indicating multicollinearity, which makes it challenging to improve
performance by score fusion.

In contrast, within the MOS-FAD Fusions that incorporate MOS
scores, LightGBM outperforms MLP and any SSL-FADs. Consid-
ering LightGBM’s tree-like structure, we reason that MOS plays a
gating role in the fusion process. Building on this hypothesis, we
introduce the Gated MLP, which outperforms LightGBM, providing
an evidence of MOS as a gating mechanism.

For further improvement, we introduced a more rigorous gate
filtering mechanism named ‘fusion with thresholding,’ drawing
upon prior MOS knowledge. Among MOS-FAD Fusions, the adop-
tion of fusion with thresholding yields performance improvements.
Notably, both LightGBM with thresholding and Gated MLP with
thresholding surpass the previous SOTA performance. Remarkably,
Gated MLP with thresholding demonstrates an impressive 13.6%
reduction in EER.
b. Embedding Fusion: We substituted the MOS and FAD scores
with embeddings generated by the SSL model, except for the MOS

Table 3. EER of each fusion on ASVSpoof2021 DF Eval Track.
Scores stand for the fusion of FAD and MOS scores. Emb stands for
the fusion of FAD and MOS embeddings. † is significantly better
than the former SOTA when significance level p is set at 0.01.

DF Eval
Model Type Model Score Emb

FAD Fusion MLP 0.2110 0.2049
LightGBM 0.2221 \

MOS-FAD
Fusion

MLP 0.3160 0.1763
LightGBM 0.1732 \
Gated MLP 0.1661 0.1890

MLP + threshold 0.2921 0.1509†

LightGBM + threshold 0.1476† \
Gated MLP + threshold 0.1351† 0.1509†

Former SOTA in ASVspoof 2021 (T23 in [8]) 0.1564

zf in ‘fusion with thresholding.’ In the MLP approach of FAD Fu-
sion, all embeddings from SSL-FADs are concatenated into a 6,144-
dimension tensor, which is then input into the MLP. In the MLP
approach of MOS-FAD Fusion, embeddings from both SSL-FAD
and SSL-MOS are concatenated to create a 12,288-dimension tensor
as input for the MLP. In the case of Gated MLP, the concatenated
6,144-dimension embeddings, generated by SSL-MOS, undergo a
linear layer followed by a Sigmoid activation layer to produce gate
units of 6,144 dimensions. These gate units control how much infor-
mation from the concatenated 6,144-dimensional embeddings, pro-
duced by SSL-FADs, is passed into the MLP. Notably, the number of
hidden units in the MLP described in this section is half of the input
dimension.

The results show that the embeddings-based MLP without MOS
data failed to surpass the performance of that with MOS data and
the best SSL-FAD model, highlighting the necessity of incorporat-
ing MOS information. Furthermore, embeddings-based fusions with
thresholding outperform their respective baseline models, which fur-
ther validates the appropriateness of MOS as the gating mechanism
in fusion.

Finally, when the significance level p is set to 0.01, the best per-
formance of ‘Score Fusion’ significantly outperforms that of ‘Em-
beddings Fusion.’ A possible reason is that the gate logic in score
fusion serves as a more powerful mechanism for combinations than
the combinations learned through the model in embedding fusion.
This confirms the effectiveness of ‘Score Fusion.’

6. CONCLUSION

In this paper, we have proposed MOS-FAD, a robust approach for
FAD via automatic MOS predictor. We used the MOS-based data-
filter to resample the training and validation dataset, which led to ef-
fective training for SSL-FADs. Additionally, our results have shown
that utilizing MOS as a gating mechanism in the fusion with FAD
scores improves performance, based on which we proposed a novel
fusion model, Gated MLP with thresholding. This MOS-FAD fusion
method, significantly decreases the EER by 13.6%, compared with
the best system reported so far. Given that the misuse of fake audio
generation can potentially have negative ramifications on society, we
hope that this study will encourage further research into this rapidly
evolving and crucial field and help circumvent any problems.
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