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Abstract—This paper describes a weakly-supervised approach
to Automatic Chord Estimation (ACE) task that aims to estimate
a sequence of chords from a given music audio signal at the
frame level, under a realistic condition that only non-aligned
chord annotations are available. In conventional studies assuming
the availability of time-aligned chord annotations, Deep Neural
Networks (DNNs) that learn frame-wise mappings from acoustic
features to chords have attained excellent performance. The ma-
jor drawback of such frame-wise models is that they cannot be
trained without the time alignment information. Inspired by a
common approach in automatic speech recognition based on non-
aligned speech transcriptions, we propose a two-step method that
trains a Hidden Markov Model (HMM) for the forced alignment
between chord annotations and music signals, and then trains
a powerful frame-wise DNN model for ACE. Experimental re-
sults show that although the frame-level accuracy of the forced
alignment was just under 90%, the performance of the proposed
method was degraded only slightly from that of the DNN model
trained by using the ground-truth alignment data. Furthermore,
using a sufficient amount of easily collected non-aligned data, the
proposed method is able to reach or even outperform the conven-
tional methods based on ground-truth time-aligned annotations.

Index Terms—Automatic chord estimation, forced alignment,
HMM, CNN, and RNN.

I. INTRODUCTION

Harmonic progression is an important property of music in
western music theory, which provides rich information about
the characteristics of the musical work. In the Music Informa-
tion Retrieval (MIR) community, Automatic Chord Estimation
(ACE) [1] has been a long-lasting research theme. Modelling
and automating the estimation process has still been a chal-
lenging task due to the complexity of music signals and the
implicit relationships between the chord labels.

A standard approach to ACE is to extract acoustic features
that represent the harmonic characteristics of music signals
and then train some machine learning models in a data-driven
manner. Although the performance of ACE has recently been
improved remarkably [2], conventional studies stand on the
assumption that time-aligned chord annotations are available
as supervised data. Producing such annotations is costly, since
manual chord annotation requires careful judgments based on
knowledge on musical theories, and time alignments have to

Fig. 1. The proposed training strategy based on an HMM for forced alignment
and a DNN for automatic chord estimation.

be carefully given to each chord symbol. This makes it dif-
ficult to extend the scale of supervised data efficiently, and
the limitation becomes especially distinct when Deep Neural
Networks (DNNs) are introduced for estimating the posteriors.

In automatic speech recognition (ASR), which has a similar
task formulation, a recognition model is typically trained on
weaker labelled data. Only a sequence of symbols (phonemes
or words) is given for the audio signal of each utterance with-
out any time alignment information. In order to train a DNN
model such as the HMM-DNN hybrid model [3] into the
framework of ASR, the annotated symbols are firstly aligned
to frame-wise acoustic feature sequences with a trained HMM
(forced-alignment). Then a DNN is trained for accurately es-
timating the label posteriors at each frame.

Inspired by such an approach to ASR, in this paper we
propose an ACE method based on a two-step training strategy
(Fig. 1). Our method extracts frame-wise chroma vectors from
music signals by using a state-of-the-art DNN-based feature
extractor [4]. In the training phase, an HMM that represents
chord labels as latent and feature vectors as observed variables
is trained for estimating the time alignment between a feature



Fig. 2. Time-aligned and non-aligned chord labels. In time-aligned labels,
the start and end timing of each chord are annotated in seconds.

sequence and the corresponding non-aligned chord annotations
(Fig. 2). A frame-wise classifier based on a Convolutional
Recurrent Neural Network (CRNN) is then trained on the time-
aligned pairs of feature sequences and chord label sequences.
In the test phase, the trained classifier is used for estimating
the posterior probabilities of chord labels at each frame from
a given music signal and another HMM is used for estimating
the optimal path of chord labels.

The main contribution of this paper is to show that non-
aligned chord annotations are useful for effectively training
machine-learning based ACE models. Furthermore, we show
that by using a sufficient amount of training data with non-
aligned annotations, the trained DNN model can reach or even
outperform the DNN models trained with only ground-truth
time-aligned chord annotations. To the best of our knowledge,
this is the first attempt in ACE to train DNN model on non-
aligned chord annotations.

II. RELATED WORK

Some common methodologies have been developed in order
to extract effective harmonic features from the audio signal.
The chroma vector, which indicates the relative intensities of
chromatic pitch classes in each audio frame [5], is the most
representative and has been widely employed. Based on the
characteristics of harmonic structures in the frequency domain,
many effective techniques to extract chroma features have been
proposed (e.g., [6], [7]). Furthermore, data-driven approaches
have recently been considered to be promising [4], [8], [9].

The core of ACE is to model the translation process from a
frame-level domain (harmonic features) to a symbol-level do-
main (chord labels). Conventionally, the relationships between
a feature sequence and a chord label sequence is modeled by
a Hidden Markov Model (HMM) [6], [10]. However, since
Humphrey and Bello [11] proposed a Convolutional Neural
Network (CNN) model, discriminative methods that use DNNs
for directly estimating a sequence of the posterior probabilities
of chord labels have gained a lot of attention [12], [13],

A common approach is to estimate the posterior probabili-
ties at the frame level directly from low-level time-frequency
representations such as Short-Time Fourier Transform (STFT)
or Constant-Q Transform (CQT) spectrograms rather than hand-
crafted features. A musically-meaningful design of the output
of a DNN based on chord theory [14], [15] and an even-
chance training scheme [16] can improve the performance of
ACE, especially when a large chord vocabulary is used and

the frequencies of chords are heavily biased. Another approach
is to estimate the posterior probabilities at the symbol level.
Deng and Kwok [17] proposed a method that uses a pre-trained
HMM for estimating chord boundaries and then uses a DNN
for estimating a chord for each segment consisting of multiple
frames. This method is better at estimating seventh chords than
frame-level ACE models.

The conventional methods mentioned above make use of
carefully time-aligned chord annotations as supervising data. A
number of time-aligned annotation datasets have been released
for training and evaluating those models. In the datasets used
in MIREX evaluation, for example, more than 1000 annotated
pieces are available in total. Considering the other successful
domains such as ASR, the amount of the training data is still
comparatively small. It is thus natural to expect that there is
still room for improving the performance of ACE if a larger
amount of training data would be available.

III. PROPOSED METHOD

This section describes the proposed method of ACE based
on a CRNN trained from non-aligned chord annotations.

A. Problem Specification
Let X = {x1, · · · ,xN} be a frame-level sequence of acous-

tic features extracted from a music signal, where xn ∈ RD is
a D-dimensional feature vector and N is the number of time
frames. Let Z = {z1, · · · , zN} be a sequence of chord labels,
where zn ∈ {0, 1}K is a one-hot vector indicating a chord
label in a chord vocabulary of size K. The task of statistical
ACE is defined as follows:

Z∗ = argmax
Z

p(Z|X), (1)

where Z∗ is the optimal sequence of chord labels that maxi-
mizes the posterior probability p(Z|X).

In this task, we need to estimate both chord symbols and
boundaries. Typically, p(Z|X) is evaluated by aligning Z with
X at the frame level and estimating the frame-wise posterior
probability p(zn|xn). This is the main reason why time align-
ment information is required for training an ACE model.

As a primordial step, a DNN-based feature extractor pro-
posed by Wu [4] is used for extracting a sequence of chroma
vectors F = {f1, · · · , fN} from the 5-channel Harmonic CQT
(HCQT) [18] representation Q = {q1, · · · ,qN} of a music
signal, where fn ∈ R36 is a 36-dimensional vector representing
the relative intensities of the 12 chromatic pitch classes in
lower, middle, and higher frequency ranges, respectively, and
qn ∈ R5×96 is the HCQT coefficients. Each xn contains the
two representations of the frame n, i.e., xn = {fn,qn}.

B. HMM-Based Forced Alignment
To synchronize non-aligned chord annotations with a feature

sequence F at the frame level, we formulate a frame-wise
HMM that represents Z and F as latent and observed variables,
respectively, as follows:

p(F,Z) =

N∏
n=1

p(zn|zn−1)p(fn|zn), (2)



Fig. 3. An example of the HMM-based forced alignment. From top to bottom,
a sequence of the likelihoods over chord labels, the optimal path estimated by
the HMM, the ground-truth time-aligned sequence of chord labels are shown.
Chord labels other than major and minor triads are omitted.

where z0 is a dummy state. In this paper we use a von Mises-
Fisher distribution as the emission distribution as follows:

p(fn|zn) =
K∏

k=1

vMF(fn|µk, λk)
znk , (3)

where µk ∈ R36 satisfying ||µk|| = 1 and λk > 0 are a mean
direction vector and a concentration parameter, respectively. fn
is obtained by scaling fn to satisfy ||fn|| = 1. The transition
distribution is given by

p(zn|zn−1) =
K∏

k=1

K∏
k′=1

π
zn−1,kznk′
kk′ , (4)

where πkk′ is the transition probability from chord k to chord
k′. Since this HMM is a frame-level model, the self-transition
probabilities are considered to be close to 1.

Given a feature sequence F with non-aligned chord annota-
tions (Fig. 2), we estimate a chord sequence Z that maximizes
the posterior probability p(Z|F) ∝ p(F,Z). Since the chord
transitions in Z are specified by the annotations, in this paper
we train a left-to-right HMM by using a Viterbi algorithm.
After the HMM is initialized, the HMM searches the optimal
state transitions for F and updates the parameters µ, λ, and π
in a way of maximum likelihood estimation. These two steps
are iterated for several times until convergence. An example of
such forced alignment is shown in Fig. 3. Since the likelihood
p(fn|zn) is ambiguous, it is difficult to estimate a sequence of
chord labels with the ordinary unconstrained Viterbi algorithm.
Nonetheless, when the order of chord symbols is constrained,
the HMM can perform the forced alignment accurately. This
fact leads to our motivation to train a powerful DNN for ACE
based on the annotations aligned by the HMM instead of
directly using the HMM for ACE.

C. CRNN-Based Chord Estimation

We use a Convolutional Recurrent Neural Network (CRNN)
for estimating a sequence of the posterior probabilities of chord
labels Y = {y1, · · · ,yN} from X. In this study, the chord

TABLE I
CONFIGURATION OF THE PROPOSED CRNN.

Input: F(N × 36) Input: Q(N × 5× 96)

Convolution 64× 15× 3
Convolution 256× 3× 3
max pooling 3× 3
Residual block:

Bi-directional LSTM ([Convolution 256× 5× 5] ×2)
128 units ×10
×3 layers Max pooling 3× 4

Convolution 256× 15× 7
Bi-directional LSTM
128 units
×4 layers

Concatenate
Fully-connected 256× 73

*The output of each convolutional layer is activated
with the ReLU function and then batch-normalized.

vocabulary consists of six triad types such as maj, min, di-
minished, augmented, sus2, and sus4. The output size of the
last layer is thus 73 (72 triads plus a no-chord label), i.e.,
yn ∈ R73. As shown in Table I, the two representations F and
Q are processed separately at the bottom layers, with a CRNN
for Q and a multi-layer bi-directional LSTM network for F.
The convolutional layers dealing with the spectrogram Q con-
sists of 10 stacked residual blocks [19] with two convolutional
layers. The outputs of the two networks are concatenated at
the top layer to calculate the final output Y.

The CRNN is trained in a standard way. More specifically,
the cross-entropy loss between the target binary sequence Z
and the output sequence Y is iteratively minimized by using
Adam optimizer [20]. To improve the generalization capability
of the CRNN, we propose a data augmentation technique. In
each iteration, the feature sequence F and the corresponding
target label sequence Z are pitch-shifted by a random number
(up to 12) of semitones. Note that the input spectrogram Q is
not shifted. This operation is expected to act as a strong reg-
ularization during the training process, encouraging the con-
volutional layers to focus on the shapes of chords (i.e., chord
types) rather than actual pitch information when processing
the spectrogram.

D. HMM-Based Postprocessing

The final step of the proposed ACE method is to estimate a
sequence of chord symbols with boundary information from a
sequence of the frame-wise posterior probabilities of chord la-
bels Y estimated by the CRNN. This is a common smoothing
step of existing HMM-based systems [10]. More specifically,
we formulate an HMM that has chord labels Z as latent vari-
ables and outputs the posterior probabilities Y. The transition
probabilities are given by π. Using the Viterbi algorithm, the
optimal sequence Z∗ can be obtained.

An example of the estimated posterior probabilities Y and
the final outputs Z∗ is shown in Fig 4. Short-duration outliers
cannot be avoided if the label with the maximum probability
is selected in each frame. The postprocessing step can reduce
these outliers and obtain more natural results.



Fig. 4. An example of the HMM-based postprocessing. From top to bottom,
a sequence of the posterior probabilities over chords estimated by the CRNN,
a sequence of chord labels obtained by the frame-wise argmax operation, that
obtained by the HMM, and the ground-truth label sequence.

IV. EVALUATION

This section reports a comparative experiment conducted for
evaluating the proposed weakly-supervised method in compar-
ison with the completely supervised method.

A. Experimental Conditions

The frame-level accuracy of ACE for each musical piece is
measured by comparing the ground-truth and estimated chord
sequences with mir eval library [21]. The average performance
is calculated over the piece-wise accuracies weighed by the
numbers of time frames of the musical pieces. We define two
different chord vocabularies: the Majmin vocabulary that con-
sists of major (maj) and minor (min) triads plus no chord (25
classes), and the Triads vocabulary that additionally includes
augmented (aug), suspended (sus2 and sus4), diminished (dim)
triads plus no chord (73 classes).

For evaluation, we use both the Isophonics dataset consist-
ing of 220 songs of Queen, Zweieck, and The Beatles [22] and
the RWC popular music dataset consisting of 100 Japanese
popular songs [23] with chord annotations, i.e., 320 songs in
total. All the annotations are time-aligned so that the perfor-
mance can be measured. To investigate the impact of increas-
ing the amount of supervising data for the proposed method,
we additionally use as a larger dataset with non-aligned anno-
tations a subset of the Mcgill Billboard dataset [24] consisting
of 731 pieces that are disjoint with the Isophonics and RWC
datasets. Using these datasets, we design three different train-
ing configurations. In any configuration, the performance is
measured on the Isophonics+RWC dataset by performing 5-
fold cross validation.

1) Isophonics+RWC (time-aligned): The CRNN is trained
on the ground-truth time-aligned annotations without us-
ing the HMM-based forced alignment.

2) Isophonics+RWC (non-aligned): This is the same as the
Isophonics+RWC configuration except that the CRNN is
trained on the non-aligned chord annotations by using
the HMM-based forced alignment.

TABLE II
EXPERIMENTAL RESULTS ON THE ISOPHONICS AND RWC DATASETS (%).

Isophonics RWC
Majmin Triads Majmin Triads

Isophonics+RWC 83.31 79.92 82.24 76.73
(time-aligned annotations)
Isophonics+RWC 82.49 79.44 80.53 76.40
(non-aligned annotations)
Isophonics+RWC+Billboard 83.46 79.94 82.21 76.74
(non-aligned annotations)
Chordino [6] 72.21 74.24 78.78 73.66
CNN-CRF [13] 84.22 N/A 81.68 N/A

3) Isophonics+RWC+Billboard (non-aligned): The CRNN
is trained on a larger amount of non-aligned chord an-
notations (Isophonics+RWC+Billboard dataset) by using
the HMM-based forced alignment. In each fold, 80% of
the Isophonics+RWC dataset and the Billboard dataset
are used for training the CRNN.

For comparison, we test two existing ACE methods:
a) Chordino [6]: This is a method based on an HMM using

the NMF-chroma feature, which is available as a VAMP
plugin. As a baseline, we use this method with a pre-
trained model to analyze the Isophonics+RWC datasets
without performing cross-fold validation.

b) CNN-CRF [13]: This is the state-of-the-art method based
on a fully convolutional acoustic model combined with a
conditional random field (CRF), We use a reference code
implemented by the author according to the original
paper. Since the method estimates major/minor triads
only, the scores for Triads are not available.

B. Experimental Results

The experimental results are listed in Table II. Comparing
the first two rows, we observe that when the Isophonics+RWC
dataset is used as training data, the weakly supervised method
based on the forced-aligned annotations only slightly underper-
formed the supervised method based on the ground-truth an-
notations. When the Isophonics+RWC+Billboard dataset with
non-aligned annotations are used as training data, the weakly
supervised method performed even better than the completely
supervised method. This shows that the performance of ACE
obtained by the proposed method depends on the size of non-
aligned training data, and that the performance limitation of
the HMM-based forced alignment can be mitigated by collect-
ing a sufficient amount of weakly-annotated data.

In all cases, the average accuracy of the forced alignment is
around 88.5% for the Isophonics dataset and around 86.5% for
the RWC dataset. Since the CRNN is trained to emulate the
alignment behavior of the HMM, it is natural to think that the
accuracy of ACE is upper bounded by the forced alignment
accuracy. In fact, interestingly, the weakly-supervised method
is still competitive to the state-of-the-art conventional models
in estimating chord sequences for unseen data.

The performance differences between the two metrics (Ma-
jmin and Triads) are almost the same in all methods. For the



Fig. 5. The confusion matrix over the 12 root notes and that over the 6 chord
types. In the left matrix, the comparison is done over all frames, while in the
right matrix the comparison is done for time frames where the chord roots
are correctly estimated.

Isophonics and RWC datasets, the performance differences are
around 3% and around 5%, respectively. This indicates that
the ability of classifying rarely-used triads other than maj and
min is scarcely improved, even though the amount of training
data is increased and the regularization technique is used for
the training. The confusion matrices are shown in Fig. 5. The
CRNN is excellent at estimating the frequently-used maj and
min triads, while unreliable in estimating the other triads. In
the whole dataset, the total duration of aug or sus2 is nearly
10 minutes, dim is around 20 minutes, and sus4 is up to 1.4
hours. We find that the CRNN trained in the proposed strategy
is relatively good at estimating dim, is slightly worse for sus4,
and fails to recognize aug and sus2.

The main limitation of the common approach to ACE based
on the one-octave chromatic representation is that some chords
are hard to distinguish in principle. The pitch classes of sus2
chords, for example, are a subset of those of 9th chords, which
are regarded as maj chords in the standard Triads condition.
The same is true for sus4 and 11th chords. A reason why the
accuracy on dim is better than that on sus4, even though dim
appear much less frequently, would be that dim and aug chords
are less ambiguous. In addition to the heavily biased distribu-
tion of chord types, such ambiguity is considered to affect the
accuracy when the traditional flat classification scheme is used,
as suggested in [25]. One solution is to fully consider a wider
range of octaves instead of compressing frequency spectra
into one octave. In chord theory, rare triads are considered
to play unique roles in chord progressions, e.g., a sus4 chord
implies that a maj chord with the same root note comes next.
A language model of chord progressions would be effective
to solve the ambiguity.

V. CONCLUSION

This paper proposed a two-step training method that trains a
CRNN-based chord estimation model with non-aligned chord
annotations, based on an HMM-based forced alignment model
that recovers the time alignments of the annotations. We ex-
perimentally showed that the model trained in the proposed
method is competitive to the ones trained on time-aligned an-

notations, and can even outperform the completely supervised
model by using a larger amount of non-aligned data. Our study
opens up a door to make full use of non-aligned data that can
be collected easily from the Web, but has not conventionally
been used. To make the estimation results more accurate and
musically natural, we plan to integrate a symbol-wise chord
language model with the frame-wise estimation model.
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