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Abstract—This paper describes a deep generative approach to
jointly estimating chords and keys from music signals. Although
deep neural networks have widely been used for estimating vari-
ous kinds of musical elements, joint estimation of multiple kinds
of musical elements has scarcely been investigated so far. Given
the mutual dependency between keys and chords, which both
describe the harmonic content of music, we propose to use a
unified deep classification model for jointly estimating chords and
keys. At the heart of our study is the integration of supervised
multi-task learning with unsupervised variational autoencoding
for achieving improved performance and semi-supervised learn-
ing. Specifically, we formulate a deep latent-variable model that
represents the generative process of chroma vectors from discrete
key classes, chord classes, and continuous latent features. The
deep classification model and another deep recognition model are
then introduced for inferring keys, chords, and latent features
from chroma vectors. These three models are trained jointly in a
(semi-)supervised manner, where the generative model acts as a
regularizer for the classification model. The experimental results
show that the multi-task learning improves the consistency be-
tween estimated keys and chords and that the autoencoding-based
regularization significantly improves the estimation performance.

I. INTRODUCTION

Supervised methods based on deep neural networks (DNNs)
have successfully been used for estimating various kinds of
musical elements such as keys, chords, and musical notes
from music signals. In these methods, the posterior probability
of a certain musical symbol is computed, given the audio
features as input. To improve the performance, one might
borrow sophisticated DNN architectures from the other fields,
carefully design the objective function, and collect more train-
ing data. Many of these efforts have been successful in pushing
forward the state-of-the-art performance of the music tran-
scription methods.

The typical supervised approach, however, oversimplifies
the process that a person transcribes music. In general, clas-
sification models focus on only one kind of musical element,
although different musical elements are mutually dependent.
For example, the musical key is closely related to the like-
lihood that a certain chord is played [18], and chord transi-
tions are more likely to occur on downbeats [23]. When we
manually transcribe music, we consider different aspects of
music and validate the transcribed result based on our musical
knowledge. However, methods to enable DNN-based methods
to handle such relations have barely been discussed.

Classification models are usually trained for learning the
audio-to-label mapping without considering the label-to-audio

𝑞𝛼(𝐒, 𝐇|𝐗)

𝑞𝛽(𝐙|𝐗)

chords

𝐒 = {s1, … , s𝑁}

keys

𝐇 = {h1, … , h𝑁}

latent features

𝐙 = {z1, … , z𝑁}
𝑝𝜃(𝐗|𝐒, 𝐇, 𝐙)

Acoustic features

𝐗 = {x1, … , x𝑁}
Multi-task 

classification model Discrete 

latent variables

Continuous 

latent variablesRecognition model

Generative model

Fig. 1. An overview of the proposed variational autoencoding framework
consisting of deep classification, recognition, and generative models.

generative process. Recently, unified generative and discrimi-
native modeling was proposed for chord estimation based on
a variational autoencoder (VAE) [29]. This framework showed
the effectiveness of regularizing the deep classification model
by simultaneously modeling the generative process.

Another practical problem lies in the limited amount of mu-
sic data with annotations of multiple musical elements, which
is necessary for training a multi-task classification model [24].
DNNs are scalable to training data due to their deep, complex
structure, and their performance highly depends on the amount
of training data. The amount of available training data may not
be sufficient for a multi-task classifier to outperform a single-
task classifier trained with sufficient annotated music data.

As a solution to these limitations, we propose a joint chord
and key estimation method based on integration of the super-
vised multi-task learning with the unsupervised VAE training
(Fig. 1). More specifically, we formulate a deep latent-variable
model that represents the generative process of chroma vec-
tors (observed variables) from key classes, chord classes, and
continuous latent features (latent variables). In the VAE frame-
work, we introduce a deep classification model that jointly
estimates chords and keys from chroma vectors, and another
deep recognition model that infers latent features from chroma
vectors. All models are trained jointly in a supervised or un-
supervised manner, where the generative model acts as a reg-
ularizer for the classification model.

The main contribution of this paper is to propose the VAE-
based multi-task learning for improving the accuracy and mu-
sical consistency of estimated keys and chords without increas-
ing annotated training data. We also examined the performance
of the proposed method under a semi-supervised condition,
where an additional set of non-annotated data is used for the
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unsupervised training.

II. RELATED WORK

Before the emergence of deep learning, a number of music
transcription methods had been proposed for dealing with the
dependencies between different musical elements using prob-
abilistic models such as hidden Markov models (HMMs) and
dynamic Bayesian networks (DBNs). For example, the mutual
dependency between chords and keys has often been consid-
ered by assigning different probabilities to all combinations of
keys and chords, based on either musical knowledge [18], [21]
or statistics of annotations [19]. On the inference stage, the
posteriors of chords are derived from both the input acoustic
feature and the estimated probabilities of keys. Furthermore,
joint estimation of keys and chords is shown to be beneficial
for some music analysis tasks like music segmentation with
proper probabilistic formulation [25].

Recent DNN-based methods have been successfully applied
to transcription of keys [17], chords [16], [5], and notes [27].
Nonetheless, DNN-based methods considering multiple musi-
cal elements have not been well explored. A typical approach
to multi-task learning is to break down a single task into
several sub-tasks. For example, a DNN classifier proposed
by Mcfee and Bello [22] jointly estimates root notes, bass
notes, and chord tones as well as chord classes. The recently
proposed harmony transformer [5] jointly estimates chord se-
quence and chord transition positions. These works managed
to improve the performance of single-task classifiers, but they
did not consider other musical elements. Böck et al. [4] used
multi-task learning for joint estimation of tempos and beats,
and showed its benefit for beat tracking. Jiang et al. [12] used
crowd-sourced data to train a DNN-based multi-task classifier
that jointly estimates keys, chords, beats, and melody scales.
In the MIREX2019 competition, the multi-task classifier im-
proved the key estimation performance.

The importance of regularizing the deep classifiers is also
shown in recent research. Wu et al. [29] formulated a deep
latent-variable model to regularize a chord classifier in a VAE
approach [15]. In this paper, we extend this method for joint
key and chord estimation by introducing an additional latent
variable representing key classes. Instead of using single-task
classifiers for music transcription, we use a multi-task learning
approach that trains a unified deep classification model.

III. PROPOSED METHOD

This section describes the proposed method based on the
VAE-based multi-task learning.

A. Problem Specification

Let X = {xn}Nn=1 be a sequence of chroma vectors (ob-
served variables) extracted from a music signal, where N is
the number of frames and xn ∈ [0, 1]D is a D-dimensional
acoustic feature vector. In this paper it is a multi-band chroma
vector representing the pitch class activations of lower, mid-
dle and higher pitch ranges (D = 36). The chroma vectors

are extracted from the music signal using a pre-trained DNN
chroma extractor proposed in [28].

We introduce three latent variables, i.e., a sequence of chord
classes S = {sn}Nn=1, a sequence of key classes H = {hn}Nn=1,
and a sequence of latent features Z = {zn}Nn=1. The latent
features Z is defined to abstractly represent how X is devi-
ated from a basic chroma pattern specified by S, because the
discrete variable S is not sufficient for generating the actual
X. sn ∈ {0, 1}KS and hn ∈ {0, 1}KH are discrete variables
represented by one-hot vectors of KS and KH dimensions,
respectively. In this paper, the chord vocabulary consists of all
possible combinations of 12 root notes with 6 types of triad
chords (with shorthands maj, min, aug, dim, sus2, sus4), and
a non-chord label (KS = 73). The key vocabulary consists of
major and minor keys (KH = 24). zn ∈ RL is a continuous
variable that abstractly represents how xn is derived from a
basic chroma pattern specified by sn and hn (L = 64).

Our goal is to train a unified multi-task classification model
p(S,H|X) for jointly estimating keys and chords behind an
unseen music signal. The classification model can be trained
in an either supervised or unsupervised condition. Under the
supervised condition, the classification model is trained with
the ordinary supervised learning method using the paired data
of X and {S,H}. Under the unsupervised condition where
only X is used, the classification model is trained together
with the generative model of X.

B. Generative Model

We formulate the joint probability of the observed and latent
variables defined in Section III-A as follows:

pθ(X,S,H,Z) = pθ(X|S,H,Z)p(S)p(H)p(Z), (1)

where pθ(X|S,H,Z) is a deep generative model based on a
DNN parametrized by θ, representing the generative process
of the observed chroma vectors X from the chords S, keys H,
and latent features Z. Based on the property of chroma vectors
X, pθ(X|S,H,Z) is formulated using Bernoulli distributions
as follows:

pθ(X|S,H,Z)

=

N∏
n=1

D∏
d=1

Bernoulli
(
xnd|[ωθ(S,H,Z)]nd

)
, (2)

where ωθ(S,H,Z) represents the output of the DNN. The
DNN takes an N(KS+KH+L)-dimensional vector as input,
and outputs a 36N -dimensional vector (Fig. 2(c)).

The prior distributions of discrete variables S and H are
defined as uniform categorical distributions as follows:

p(S) =

N∏
n=1

Categorical
(
sn| 1

KS
1KS

)
, (3)

p(H) =

N∏
n=1

Categorical
(
hn| 1

KH
1KH

)
, (4)

where 1K is the all-one vector of size L. Because in contrast
to S and H, the latent features Z are abstract features of X,
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Fig. 2. The calculation diagrams of (a) classification model, (b) recognition
model, and (c) generative model.

which are learned in a data-driven manner, the prior p(Z) is
set to the standard Gaussian distributions:

p(Z) =

N∏
n=1

N (zn|0L, IL), (5)

where 0L is the all-zero vector of size L and IL is the identity
matrix of size L.

C. Classification and Recognition Models

Given the chroma vectors X as observed data, we aim to
infer the latent variables S, H, and Z, and estimate the model
parameters θ. Since the deep generative model pθ(X|S,H,Z)
is used, the posterior distribution pθ(S,H,Z|X) is analyti-
cally intractable. We thus use the amortized variational infer-
ence (AVI) [6] technique that introduces a variational distribu-
tion qα,β(S,H,Z|X), and optimize it such that the Kullback-
Leibler (KL) divergence from qα,β(S,H,Z|X) to the true
posterior pθ(S,H,Z|X) is minimized.

To formulate the variational distribution, we assume that
the musical classes S and H and the latent features Z are
conditionally independent and the variational posterior can be
decomposed as follows:

qα,β(S,H,Z|X) = qα(S,H|X)qβ(Z|X). (6)

These two terms are implemented with DNNs parametrized
by α and β, respectively, as follows:

qα(S,H|X) =

N∏
n=1

Categorical(sn|[πα(X)1..73]n)

N∏
n=1

Categorical(hn|[πα(X)74..97]n), (7)

qβ(Z|X) =

N∏
n=1

N (zn|[µβ(X)]n, [σ
2
β(X)]n), (8)

where πα(X) is the N(KS +KH)-dimensional output of the
multi-task DNN with parameters α (Fig. 2(a)). µβ(X) and
σ2
β(X) are the NL-dimensional outputs of the DNN with

parameters β (Fig. 2(b)).

D. Unsupervised Training

Under an unsupervised condition that only chroma vectors
X are given as observed data, we aim to jointly train the
deep generative model pθ(X|S,H,Z), the classification model
qα(S,H|X), and the recognition models qβ(Z|X) such that
the marginal log-likelihood log pθ(X) is maximized. As in the
standard VAE [15], we maximize the variational lower bound
of log pθ(X), denoted as LX(θ, α, β), given by

LX(θ, α, β)
4
= Eqα(S,H|X)qβ(Z|X)[log pθ(X|S,H,Z)]
−KL(qβ(Z|X)||p(Z))
+ Entropy[qα(S,H|X)]

+ Eqα(S,H|X)[log p(H) + log p(S)], (9)

where the gap between log pθ(X) and LX(θ, α, β) is equal to
the KL divergence from qα,β(S,H,Z|X) to pθ(S,H,Z|X),
and thus maximizing LX(θ, α, β) is equivalent to minimizing
the KL divergence [15]. When computing (9) in the forward
computation stage, the expectation in the first term is approxi-
mated via Monte Carlo integration with I samples {Si,Hi,Zi}Ii=1

drawn from (6) in a differentiable manner as follows:

Eqα(S,H|X)qβ(Z|X)[log pθ(X|S,H,Z)]

≈ 1

I

I∑
i=1

log pθ(X|Si,Hi,Zi). (10)

Specifically, {Si,Hi}Ii=1 are obtained with the Gumbel soft-
max technique [11] and {Zi}Ii=1 are obtained with the stan-
dard reparametrization trick [15], and we set I = 1 according
to the typical VAE implementation.

When the uniform priors of S and H are used, the last term
of (9) is irrelevant to the maximization of LX(θ, α, β). The
regularization by the posteriors on S and H thus corresponds
to the maximizion of the entropy of the variational posterior
qα(S,H|X).

E. Supervised Training

Under a supervised condition that chroma vectors X with
the corresponding chords S and keys H are given, one aims
to maximize the conditional semi-marginalized log-likelihood
log pθ(X|S,H). Its variational lower bound LX,S,H(θ, β) to
be maximized is derived as follows:

LX,S,H(θ, β)
4
= Eqβ(Z|X)[log pθ(X|S,H,Z)]
−KL(qβ(Z|X)||p(Z)), (11)

where the first term of (11) is computed in a similar way to
(10) except that the ground-truth chords S and keys H are
used as {Si,Hi}Ii=1.

The classification model qα(S,H|X) cannot be trained by
maximizing LX,S,H(θ, β) because the parameters α do not ap-
pear in LX,S,H(θ, β). As suggested in [14], one could remedy
this problem by adding a classification term as follows:

L′X,S,H(θ, α, β)
4
= LX,S,H(θ, β) + log qα(S,H|X). (12)
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This means that the classification model qα(S,H|X) is solely
trained while the generative model pθ(X|S,H,Z) and the
recognition models qβ(Z|X) are jointly trained.

F. Proposed Regularized Training

We explain the VAE-based regularized training of the clas-
sification model qα(S,H|X) even under a supervised or semi-
supervised condition. Let X denote a set of annotated chroma
vectors with the ground-truth chords S and keys H and let
X̂ denote an extensive set containing both annotated and non-
annotated chroma vectors (X ⊆ X̂). We aim to maximize the
sum of (9) and (11) given by

L(θ, α, β) =
∑
X̂

LX̂(θ, α, β) +
∑

X,S,H

L′X,S,H(θ, α, β). (13)

This enables the generative model pθ(X|S,H,Z) to act as a
regularizer on the classification model qα(S,H|X) even under
the supervised condition (X = X̂).

To stabilize the semi-supervised training, we use a curricu-
lum learning strategy. First, using the annotated data, only
the classification model qα(S,H|X) is fully optimized in the
non-regularized supervised manner as in Section III-E. Then,
the generative model pθ(X|S,H,Z), the classification model
qα(S,H|X), and the recognition models qβ(Z|X) are jointly
trained such that L(α, β, θ) is maximized.

G. Prediction

The classification model qα(S,H|X) is used for comput-
ing the frame-wise posterior probabilities of chords S and
keys H, given the chroma vectors X extracted from a target
music signal. Considering the temporal continuity of chords
and keys, the optimal paths of S and H are estimated from
the posterior probabilities by using the Viterbi algorithm with
uniform transition matrices except for the diagonal elements
(self-transition probabilities). In this paper, the self-transition
probabilities are set to 0.9 for chords and 0.95 for keys.

IV. EVALUATIONS

This section reports comparative experiments conducted for
evaluating the effectiveness of the proposed method.

A. Experimental Conditions

The model configurations, methods, datasets, and evaluation
measures are described below.

1) Model Configurations: Each of the classification model
qα(S,H|X), the recognition models qβ(Z|X), and the gen-
erative model pθ(X|S,H,Z) was implemented with a three-
layered bi-directional long short-term memory (BLSTM) net-
work [9] with layer normalization [1], where each layer had
128 hidden units for each direction (Fig. 2). qα(S,H|X) or
qβ(Z|X) took a 36-dimensional vector sequence as input, while
pθ(X|S,H,Z) took a 161-dimension vector sequence as in-
put. The output vector of the BLSTM layers was transformed
into the desired shape using a fully-connected layer, and then
normalized with the softmax or sigmoid function.

The parameters θ, α, and β were optimized with Adam [13]
with an initial learning rate of 0.001. Each stage of the curricu-
lum learning consisted of 300 epochs to ensure convergence.
Each minibatch contained 8 sequences randomly picked from
training data, and each sequence contains 431 frames (20 sec),
where the chroma vectors (and the ground-truth chords and
keys if available) were jointly rotated by a random number
for compensating for the imbalance in key classes.

2) Compared Methods: We tested the possible combina-
tions of two types of classification models and three types of
training methods. The compared classification models are:
• Multi-task (proposed): The chords S and the keys H are

estimated jointly from X by using the unified multi-task
classifier qα(S,H|X) shown in Fig. 2.

• Single-task: The chords S and the keys H are estimated
separately from X by using independent single-task clas-
sifiers qα(S|X) and qα(H|X) having the same architec-
tures as qα(S,H|X) except for the output layers.

The compared training methods are:
• Supervised: In the multi-task setting, α is trained by using

an annotated dataset {X,S,H} such that the posterior
probability qα(S,H|X) is maximized. In the single-task
setting, α is trained such that the posterior probability
qα(S|X) or qα(H|X) is maximized.

• Supervised VAE (proposed): In the multi-task setting, α is
trained jointly with β and θ by using an annotated dataset
{X,S,H} as described in Section III-F. Similarly, in the
single-task setting, α, β, and θ are trained jointly by using
an annotated dataset {X,S} or {X,H}, where the corre-
sponding deep generative model is given by pθ(X|S,Z)
or pθ(X|H,Z). The single-task setting is similar to the
method proposed by Wu et al. [29].

• Semi-supervised VAE (proposed): The training method is
the same as the Supervised VAE condition, except that
a dataset X̂ contains both annotated chroma vectors and
non-annotated chroma vectors extracted from external mu-
sic data.

We evaluate the effectiveness of the multi-task learning strat-
egy (joint key and chord estimation) by comparing the Single-
task and Multi-task conditions. We evaluate the effectiveness
of the VAE-based regularized training strategy by comparing
the Supervised and Supervised VAE conditions. We investi-
gate the effectiveness of using non-annotated data by compar-
ing the Supervised VAE and Semi-supervised VAE.

3) Datasets: We made a set of annotated songs and that of
non-annotated songs for evaluation. Specifically, we collected
224 songs from Isophonics dataset [10] and 63 songs from
Robbie Williams dataset [7] with time-synchronized chord and
key annotations. By excluding songs including keys other than
major and minor keys (e.g., Mixolydian scale), we had 222 an-
notated songs in total. In addition, we collected 100 songs from
RWC-MDB-P-2001 dataset [8] and 185 songs from uspop2002
dataset [2]. Together with the 65 songs from Isophonics and
Robbie Williams that were excluded from the annotated set,
we had 350 non-annotated songs in total.
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TABLE I
ESTIMATION ACCURACY AND MUSICAL CONSISTENCY OF ESTIMATED CHORDS AND KEYS

Key (%) Chord (%)
Correct Perfect 5th Relative Parallel Other Correct Consistency

Single-task (supervised) 68.97 5.61 8.30 5.79 11.32 79.69 2.69
Multi-task (supervised) 72.51 4.57 7.58 4.16 11.16 79.22 2.74
Single-task (supervised VAE) 76.52 3.04 6.60 3.92 9.90 81.46 2.67
Multi-task (supervised VAE) 79.08 2.36 6.93 3.48 8.13 81.46 2.74
Single-task (semi-sup. VAE) 74.12 4.47 6.17 4.93 10.29 81.67 2.68
Multi-task (semi-sup. VAE) 77.03 3.20 7.54 4.11 8.08 82.05 2.72

Under each condition, we conducted 5-fold cross valida-
tion on the annotated dataset. Under the Supervised and Su-
pervised VAE conditions, four out of the five folds in the
annotated dataset were used as training data. Under the Semi-
supervised VAE condition, the non-annotated dataset was used
as training data in addition to the annotated training data.

The DNN-based chroma extractor [29] used for obtaining X
was trained with Slakh2100 dataset [20] consisting of music
signals synthesized from MIDI data. Each signal sampled at
44.1kHz was transformed into the log-spectrogram of 84 fre-
quency bins using short-time Fourier transform (STFT) with
a Hann window of 4096 points, a shifting interval of 2048
points, and a frequency resolution of one semitone per bin. In a
similar way to harmonic-CQT [3], four log-spectrograms start-
ing from different octaves were computed, and then stacked
to yield a multi-channel log-spectrogram. The multi-channel
spectrogram was then fed to the neural chroma estimator [29]
as the input. When calculating the chroma vectors X for real
music recordings, the music signals were transformed in the
same way, and fed to the neural chroma estimator.

4) Evaluation Measures: The chord and key estimation ac-
curacies were measured by the weighed overlap rates between
the estimated and ground-truth chord and key classes of the
annotated music signals. The weighed accuracy of each song
was calculated with mir eval library [26]. The overall accu-
racy was given by the average of the piece-wise accuracies
weighed by the song lengths. We also measured the ratios of
typical estimation errors on keys, namely perfect 5th errors
(an estimated key is a perfect-5th above a reference key),
relative keys, and parallel keys. These errors are considered
more sensitive to the ambiguity of chroma vector.

In order to validate our hypothesis that the multi-task classi-
fier learns the musically-meaningful relations between chords
and keys, we propose a metric to measure the musical consis-
tency between the estimated chords and keys. Specifically, the
musical consistency of each song was measured by the pitch
class overlap between chords and keys:

Consistency(S,H) =
1

N

N∑
n=1

Overlap(sn,hn), (14)

where Overlap(sn,hn) ∈ {0, 1, 2, 3} because sn represents
triad chord. The definition of this consistency measure is based
on the simple assumption that a chord is more likely to oc-
cur when it shares more notes with the current key. Higher
consistency indicates that the estimated keys and chords are
expected to follow musical rules more often.

B. Experimental Results

The experimental results of chord and key estimation are
presented in Table I. The effectiveness of the multi-task learn-
ing and that of the VAE-based regularized training are dis-
cussed under the supervised condition. The proposed semi-
supervised training is further evaluated.

1) Supervised Training: The first four rows in Table I list
the performances of chord and key estimation trained on the
same annotated dataset. Comparing the supervised single-task
and multi-task classifiers, we found little improvement in chord
estimation, but a large improvement in key estimation. From
the comparison, the positive effect of using the multi-task
learning strategy was observed on key classification.

Both the single- and multi-task classifiers significantly im-
proved chord and key estimation when trained with the VAE-
based regularization. For the same annotated dataset, the in-
tegration of the multi-task and VAE strategies improved key
estimation by more than 10%, compared to the single-task key
classifier. For reference, the best-performing method in the
audio key detection task of MIREX 2019 achieved 74.94%
and 78.31% on the Isophonics and Robbie Williams datasets,
respectively [12]. Although these scores cannot be directly
compared with the scores listed in Table I because different
training data were used, our method can be considered to be
comparable with the state-of-the-art method.

As shown in the rightmost column in Table I, the multi-
task learning was proven to improve the musical consistency
between the estimated keys and chords. In contrast, although
the VAE-based regularization significantly improved the esti-
mation accuracy, the consistency was not improved. From the
key estimation errors listed in Table I, we found that the multi-
task classifier tended to make more relative key errors than the
single-task classifier. In the multi-task classifier, relative keys
tend to have higher joint probabilities with correct chords than
the other incorrect keys.

Fig. 3 shows examples of chord and key sequences in-
ferred by qα and the reconstructed chroma vectors given by
pθ. The regularized classifier clearly yielded more accurate
results than the non-regularized one. Comparing the two re-
constructed chroma vectors conditioned by different key and
chord sequences, we observed that the generative model pθ ef-
fectively reflected the chords, but ignored the keys. A possible
reason is that keys are much less informative than chords for
reconstructing chroma vectors; only a single key is often used
in a song. Training the deep generative model in a data-driven
manner might be insufficient for unifying key information.
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To sum up, from the experimental results of the supervised
conditions, we confirmed that the proposed method improved
both accuracy and consistency of key and chord estimation.
Although the deep generative model apparently do not make
effective use of key information, it was useful for regularizing
the key classifier.

2) Semi-supervised Training: As shown in the bottom two
rows in Table I, the proposed semi-supervised training posi-
tively and negatively affected the chord and key estimation ac-
curacies, respectively. Compared to the regularized classifiers
trained with the annotated songs only, the classifiers trained
with the extensive dataset achieved slightly better accuracy
in chord estimation. In contrast, although still better than the
non-regularized classifiers, the semi-supervised classifiers be-
came less accurate in key estimation. Specifically, the semi-
supervised classifiers made more perfect 5th, relative key, and
parallel key errors, and made less errors in the other types. This
shows that after training with the unknown chroma vectors, the
generative model became more vulnerable to the ambiguity in
chroma vectors with respect to key classes.

V. CONCLUSION

This paper described a DNN-based joint chord and key esti-
mation method that integrates the multi-task learning architec-
ture into the VAE framework for regularized (semi-)supervised
learning. Extending the VAE-based chord estimation method
proposed in [29], we formulated a multi-task classifier for
estimating keys and chords from chroma vectors. We experi-
mentally confirmed that the multi-task classifier improved the
estimation accuracies of keys and chords and the musical con-
sistency between them. We also revealed some limitations of
the current generative model, e.g., the little contribution of key
information to reconstructing chroma vectors. Although the
semi-supervised training is theoretically feasible and actually
contributed to improving the chord estimation performance,
the key estimation performance was degraded.

This study is a pioneering attempt in formulating a VAE-
based semi-supervised music transcription method that jointly
estimates multiple musical elements. We believe that improv-
ing the performance of the unified generative model is the key
to developing a comprehensive music transcription model.
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[24] J. Pauwels, K. O’Hanlon, E. Gómez, and Mark B. Sandler. 20 years of
automatic chord recognition from audio. In ISMIR, pages 54–63, 2019.

[25] J. Pauwels and G. Peeters Segmenting music through the joint estimation
of keys, chords and structural boundaries. In ACM MM, pages 741–744,
2013.

[26] C. Raffel, B. McFee, E. J. Humphrey, J. Salamon, O. Nieto, D. Liang,
and D. P. W. Ellis. mir eval: A transparent implementation of common
MIR metrics. In ISMIR, pages 367–372, 2014.

[27] Y. Wu, B. Chen, and L. Su. Polyphonic music transcription with
semantic segmentation. In ICASSP, pages 166–170, 2019.

[28] Y. Wu and W. Li. Automatic audio chord recognition with MIDI-trained
deep feature and BLSTM-CRF sequence decoding model. IEEE TASLP,
27(2):355–366, 2019.

[29] Y. Wu, T. Carsault, E. Nakamura, and K. Yoshii. Semi-supervised Neural
Chord Estimation Based on a Variational Autoencoder with Latent Chord
Labels and Features. arXiv preprint arXiv:2005.07091, 2020.

Proceedings, APSIPA Annual Summit and Conference 2020 7-10 December 2020, Auckland, New Zealand

506


