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ABSTRACT
Serialized output training (SOT) attracts increasing attention
due to its convenience and flexibility for multi-speaker au-
tomatic speech recognition (ASR). However, it is not easy
to train with attention loss only. In this paper, we propose
the overlapped encoding separation (EncSep) to fully utilize
the benefits of the connectionist temporal classification (CTC)
and attention (CTC-Attention) hybrid loss. This additional
separator is inserted after the encoder to extract the multi-
speaker information with CTC losses. Furthermore, we pro-
pose the serialized speech information guidance SOT (GEnc-
Sep) to further utilize the separated encodings. The sepa-
rated streams are concatenated to provide single-speaker in-
formation to guide attention during decoding. The exper-
imental results on Libri2Mix and Libri3Mix show that the
single-speaker encoding can be separated from the overlapped
encoding. The CTC loss helps to improve the encoder rep-
resentation under complex scenarios (three-speaker and noisy
conditions), which makes the EncSep have a relative improve-
ment of more than 8% and 6% on the noisy Libri2Mix and
Libri3Mix evaluation sets, respectively. GEncSep further im-
proved performance, which was more than 12% and 9% rel-
ative improvement for the noisy Libri2Mix and Libri3Mix
evaluation sets.

Index Terms— Automatic speech recognition, multi-
speaker, overlapped encoding separation, serialized output
training

1. INTRODUCTION

Automatic speech recognition gets impressive performance
with the development of deep learning [1–6]. The word er-
ror rate (WER) of ASR for single speaker conditions has
achieved the level of human transcribers [3, 7], even when
faced with many complex scenarios, such as noise [8–12].
However, compared to the additive noise and reverberation,
the inference from other speakers, known as the cocktail
problem, has a more severe effect on ASR [13–15]. As a
result, ASR performance has dramatic degradation under
multi-speaker scenarios [14].

All the experiments were conducted at Kyoto University

Recently, extensive research has been conducted on multi-
speaker ASR [14, 15]. It is intuitive to decompose the multi-
speaker ASR task to speech separation and then recogni-
tion [16, 17]. The pipeline consists of a speech separation
front-end [18, 19] followed by a recognizer [16]. However,
speech separation front-ends, especially the single-channel
methods, often bring speech information loss and distortion
issues, which harms ASR [16, 20]. With the development of
end-to-end ASR, the ASR back-end already has some abili-
ties to handle multi-speaker conditions [21, 22]. Utterance-
level permutation invariant training (uPIT) [21] is popular
for multi-speaker ASR [23]. During training, all possible
permutations of speakers are needed to compute loss, and
the smallest loss is used for backpropagation [23]. In the
uPIT-based ASR, the number of output layers constrains the
maximum number of speakers [24], and training becomes
computationally complex with more speakers [24].

The serialized output training (SOT) [24] is proposed to
solve the above-mentioned drawbacks. SOT-based ASR is
based on the attention-based encoder-decoder (AED) struc-
ture [25, 26]. It designs the training label: the overlapped
speeches are serialized into a single token sequence accord-
ing to the speaking start-time of each speaker [24]. The prob-
lem of the variable speaker number could also be alleviated
without the performance degradation compared to uPIT-based
ASR [24]. Given the success of SOT, more studies improve
the model’s performance by designing training targets. The
timestamp of each speaker is inserted as a token to the train-
ing label [27]. Besides, the speaker diarization task also helps
the SOT-based ASR [28].

The connectionist temporal classification (CTC) [29] en-
forces the monotonic alignment between speech and label
sequences, which helps the attention by solving the mis-
alignment issues [30]. Thus, the CTC and attention (CTC-
Attention) hybrid loss [30] is widely adopted for training
the ASR systems. Although it is commonly used in single-
speaker conditions, it is difficult to use it in SOT-based ASR
because the serialized training label is difficult to align with
the overlapped speech embedding. Thus, the SOT-based
ASR systems only use attention cross-entropy loss for train-
ing [24, 27, 28].

In this paper, we first propose the overlapped encoding
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Fig. 1. Flowchart of training strategies in different multi-speaker ASR systems.

separation (EncSep) to improve the encoding representation
in the SOT-based ASR by utilizing the CTC-Attention loss.
An additional separator is used to get the single speaker’s
encoding from the encoder’s overlapped speech embedding.
The separated encodings are arranged according to speaking
time, and the CTC loss is computed. We also propose the
single-speaker information guidance SOT (GEncSep) to fur-
ther utilize the separated encodings, which are concatenated
for decoding. The attention mechanisms are used to focus
on the different single-speaker information from the concate-
nated embedding.

2. RELATED WORKS

2.1. Utterance-level Permutation Invariant Training (uPIT)
for Multi-speaker ASR

uPIT-based multi-speaker ASR contains a shared mixed
encoder, several speaker-differentiating (SD) encoders, a
shared recognition encoder, a shared attention module, and
a shared decoder. The mixed encoder transforms the over-
lapped speech feature Y to embedding H. Then, the extracted
mixed embeddings are fed into several SD encoders. Each
SD encoder only extracts one speaker information Hs

SD, s
represents the s-th speaker. The shared recognition encoder
transforms the representation of the s-th speaker from SD
encoders to high-level representations for recognition Hs

Reg .
Finding a definite relationship between the separated fea-

tures and multiple speakers is difficult for multi-speaker pro-
cessing. uPIT was proposed to solve this permutation issue by
computing the smallest loss with all different estimation-label
permutations. uPIT is adopted to compute the CTC losses be-
tween the encoding of the recognition encoder Hs

Reg and its
corresponding label Ts. An additional linear layer is inserted
after the recognition encoder to compute the CTC loss and get
the transcription Cs. The number of permutations between
the recognition encodings and labels is S!, where S represents
the speaker number. The loss function of CTC with uPIT is

as follows:

LCTC-uPIT = argmin
π∈P

∑S

s=1
LossCTC(Cs,Tπ(s)), (1)

where P represents the set of all permutations of 1, ..., S.
π(s) represents the s-th element in a permutation π, and T is
the set of transcription labels for S speakers. The recognition
encodings HReg are finally fed into the shared attention and
the shared decoder to get the attention-based outputs Hs

Att.
The loss of the decoder is cross-entropy (CE) with the same
permutation as that of the CTC-uPIT:

LCE =
∑S

s=1
LossCE(Hs

Att,Tπ̂(s)) (2)

where π̂(s) represents the permutation obtained from the
CTC-uPIT. The final training loss for uPIT-based ASR is
CTC-Attention Hybrid loss:

LuPIT = λLCTC-uPIT + (1− λ)LCE. (3)

λ is the hyperparameter to control the two losses.

2.2. Serialized Output Training (SOT) for Multi-speaker
ASR

SOT is based on the attention-based encoder-decoder (AED)
structure to solve the multi-speaker ASR, which is shown
in Fig. 1–(a). It contains an encoder, an attention mod-
ule, and a decoder. All three components cooperate during
the decoding to output transcriptions of different speakers
according to their start-time of speaking. The encoder trans-
forms the overlapped speech feature Y to embedding H.
Different from the uPIT-based ASR, the overlapped speech
embedding is directly fed into the attention and decoder to
get the transcriptions without any implicit or explicit sepa-
ration. Training targets help the model achieve this ability.
It innovatively arranges the transcriptions of different speak-
ers according to their start-time of speaking to form a new
transcription. A special symbol ⟨sc⟩ is inserted between
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different speakers to represent the speaker change. For ex-
ample, for a two-speaker case, the label will be given as
T = {t11, ..., tN

1

1 , ⟨sc⟩, t12, ..., tN
2

2 }, where t1 and t2 represent
the transcriptions of the 1-th and 2-nd speaker, respectively.
The N1 and N2 represent the lengths of the transcriptions.
Based on this training target, the attention mechanism is
able to focus on the required information in encoding the
overlapped speech and decoding the transcriptions of mul-
tiple speakers C according to their speaking time. The loss
function of SOT-based ASR is simple as follows:

LSOT = LossCE(C,T), (4)

Because the embedding obtained by the encoder does not per-
form any separation, it is hard to align the speech embedding
with the label sequence by CTC. As a result, only CE loss is
used when training the SOT-based ASR system.

2.3. Self-Supervised Learning-based Feature Extraction

Feature extraction with self-supervised learning (SSL) shows
powerful performance improvement for ASR [9]. The outputs
of the SSL module replace the traditional features like Mel-
Frequency Cepstral Coefficients (MFCC) and Filter Bank
(F-Bank). The SSL-based feature extraction module [31–33]
typically consists of convolution layers and transformer, e.g.,
WavLM [34], HuBERT [35]. With massive pretraining data,
the SSL models already contained the capability to con-
vert the speech waveform into the acoustic hidden units.
Moreover, some SSL models [34, 35] demonstrate robustness
against noise or other inference speakers by incorporating
noisy simulation. The other parts of the ASR system are the
same as the other E2E ASR systems.

3. PROPOSED METHOD

To improve the encoder’s representation, we first propose the
overlapped encoding separation (EncSep) to utilize the CTC-
Attention hybrid loss in the SOT-based ASR. Then, we pro-
pose the single-speaker information guidance SOT (GEnc-
Sep) to utilize the separated embeddings.

3.1. Overlapped Encoding Separation (EncSep)

In the SOT-based ASR, the encoder transforms the overlapped
speech feature Y to embedding H. The embedding H here
is overlapped by speakers. Thus, some module for speech
separation is introduced to convert the overlapped encoding
H into separated single-speaker encodings Hsep:

Hsep = Separator(H). (5)

The Long Short-Term Memory (LSTM) [36] is adopted as the
separator in this work:

Ĥ = LayerNorm(LSTM(H)),

Hs
sep = ReLU(Linears(Ĥ)),

(6)

Several linear layers are used to generate the single-speaker
information Hs

sep. Linear layers correspond to a speaker ac-
cording to the start time of speaking in a serialized manner.
Then, the CTC loss is computed as follows:

LCTC-EncSep =
∑S

s=1
LossCTC(C

s,Ts)

=
∑S

s=1
LossCTC(Linears(Hs

sep),T
s)

(7)

where Ts represents the s-th transcription arranged in the se-
rialized manner.

The attention-based CE loss, same as Eqn. (4), is also used
for training. The final loss function for training EncSep is as
follows:

LEncSep = γLCTC-EncSep + (1− γ)LSOT, (8)

where the γ is the hyperparameter to balance the two losses.
The flowchart of the proposed EncSep training strategy is
shown in Fig. 1–(b). The separator is only used to intro-
duce CTC information during training. When decoding, Enc-
Sep maintains the same structure as the SOT-based method
(Fig. 1–(a)). Thus, EncSep does not increase any computa-
tional cost during decoding from the SOT-based method.

3.2. Single-speaker Information Guidance SOT (GEnc-
Sep)

EncSep only uses the separated embeddings Hsep to intro-
duce the CTC loss into the encoder. To further utilize the sep-
arated embeddings Hsep, we also propose the single-speaker
information guidance SOT (GEncSep). Compared with the
EncSep, the GEncSep utilizes the separated embeddings Hsep

from the separator, which is shown in Fig. 1–(c).
GEncSep contains an encoder, which transforms the over-

lapped speech feature Y to embedding H. The separator sep-
arates the overlapped embedding H into single-speaker em-
beddings H1

sep, ..., HS
sep. Then, the separated embeddings are

concatenated over time dimension as:

Hcon = Concat(H1
sep, ...,HS

sep) (9)

The attention mechanism is used to compute the attention
weights with single-speaker information:

an
con = Attention

(
Hcon,dn−1

)
. (10)

ancon represents the context vector obtained with the attention
mechanism from the concatenated embedding Hcon. dn−1 is
the hidden state of the decoder. The decoder decodes from
the attention feature and also the previously predicted tokens:

cn = Decoder
(
Hcon, an

con, c1:n−1
)
. (11)

The corresponding output C is generated iteratively by the
decoder. The training loss function of GEncSep is the same
as Eqn. (8).
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4. EXPERIMENTS

4.1. Datasets and Experimental Settings

We used the LibriMix dataset [37] to evaluate the model per-
formance. It used the train-clean-100, train-clean-360, dev-
clean, and test-clean subsets from the LibriSpeech dataset
[38] as the clean speech. The noise samples were taken from
WHAM! dataset [39]. We used the official scripts1 to syn-
thesize Libri2Mix and Libri3Mix. We used the offset file to
make different speaking start times for multiple speakers. The
two-speaker offset files followed the official ESPnet setting 2

, and the three-speaker offset files were created by ourself.
Conformer [3] was used as the ASR back-end. Except for

the proposed modules, the other modules followed the official
ESPnet settings3. The baselines and EncSep used the origi-
nal Transformer layer. For GEncSep, the structure of the de-
coder layer is shown in Fig. 1–(c). A character-based vocab-
ulary was used with the size 32, including a ⟨sc⟩ for speaker
change symbol. We used the WavLM-Large [34] for feature
extraction, which has been shown effective for noise-robust
ASR [40]. During training, all parameters of the WavLM-
Large were frozen. In the proposed method, the input and
output dimensions of the separator were 256 and 512; the
number of LSTM layers were 2. The dimensions of linear
layers were 512 and 256 for input and output, respectively.
We also tried bidirectional LSTM layers. For bidirectional
LSTM, the dimensions of linear layers were 1024 and 256 for
input and output, respectively.

For baselines, the “SOT” followed the ESPnet official
setting; only the attention CE loss was used with Eqn. (4).
“SOT-H” was selected as another baseline. Different from
the “SOT”, it used the CTC-Attention hybrid loss instead of
only Attention loss with the serialized label to train the model.
Its neural network structure followed the ESPnet setting.

The training epochs were 60, and the final evaluation
model was averaged over ten checkpoints, according to the
loss in the validation set. It should be emphasized that pre-
training is unnecessary for the two-mixed condition, but
a few epochs of original SOT training are needed for the
three-mixed condition. The all parameters of GEncSep was
pretrained with EncSep.

4.2. Experimental Results

Table 1 shows the experimental results on noisy Libri2Mix
and Libri3Mix sets. Compared with “SOT”, “SOT-H” had a
significant performance degradation on both the development
and evaluation sets of Libri2Mix with the CTC-Attention

1https://github.com/JorisCos/LibriMix
2https://github.com/espnet/espnet/tree/master/

egs2/librimix/sot_asr1
3https://github.com/espnet/espnet/blob/master/

egs2/librimix/sot_asr1/conf/tuning/train_sot_asr_
conformer_wavlm.yaml

Table 1. Experimental Results on Noisy Libri2Mix and
Libri3Mix. “Bi” represents the Bi-directional.

Exp. Systems Bi
Libri2Mix Libri3Mix
Dev Eval Dev Eval

1 SOT - 19.4 17.1 30.5 28.2
2 SOT-H - 24.6 22.0 - -

3 EncSep ✗ 18.4 15.9 28.5 26.5
4 EncSep ✓ 18.0 15.7 28.6 26.4

5 GEncSep ✗ 18.3 15.3 28.8 25.7
6 GEncSep ✓ 17.2 15.0 28.0 25.9

Table 2. Experimental Results on Clean Libri2Mix and
Libri3Mix. “Bi” represents the Bi-directional.

Exp. Systems Bi
Libri2Mix Libri3Mix
Dev Eval Dev Eval

7 SOT - 6.8 7.0 15.0 14.7
8 SOT-H - 10.4 10.3 - -

9 EncSep ✗ 7.0 7.3 13.9 13.4
10 EncSep ✓ 7.0 7.2 13.9 13.5

11 GEncSep ✗ 6.7 6.8 13.0 14.3
12 GEncSep ✓ 6.4 6.6 13.3 13.1

hybrid loss, which confirms that the encoder’s implicit sep-
aration performed poorly (comparison between Exp. 1 and
Exp. 2). With the separator, the proposed “EncSep” signif-
icantly improved from “SOT” (p-value < 0.01) for both the
development and evaluation sets of Libri2Mix and Libri3Mix
(comparison between Exp. 1 and Exp. 3). It was shown that
the CTC losses with separator benefited the encoder represen-
tation since “EncSep” has the same structure as “SOT” during
decoding. The bi-directional separator did not bring further
improvement (comparison between Exp. 3 and Exp. 4). For
“GEncSep”, the experimental results suggested that providing
the separated embedding helped the decoding, significantly
improving the performance on both the development and eval-
uation sets of Libri2Mix and Lib3Mix compared with “SOT”
(p-value < 0.01, comparison between Exp. 1 and Exp. 5).
Furthermore, the bi-directional separator showed significant
improvement (p-value < 0.01, comparison between Exp. 5
and Exp. 6) on development sets of Libri2Mix and Libri3Mix,
which were used to select the evaluation model.

Table 2 shows the experimental performance on clean
Libri2Mix and Libri3Mix sets. Similar to the noisy condi-
tions, “SOT-H” had a significant performance degradation
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Table 3. Comparison of ASR systems on Libri2Mix and Libri3Mix. “SSL” represents the self-supervised learning.

Systems w/ Front-end w/ SSL
Libri2Mix Libri3Mix
Dev Eval Dev Eval

Noisy
PIT-Conformer4 ✗ ✗ 23.7 23.5 - -
Conditional-Conformer [41] ✗ ✗ 24.5 24.9 - -
WavLM Base [42] ✗ ✓ - 27.5 - -
TS-HuBERT [42] ✗ ✓ - 24.8 - -
SOT-Conformer5 ✗ ✓ 19.4 17.1 30.5 28.2
TSE-Whisper [43] ✓ ✗ - 12.0 - -
GEncSep (this study) ✗ ✓ 17.2 15.0 28.0 25.9

Clean
W2V-baseline [44] ✗ ✓ 11.6 12.3 - -
W2V-Sidecar-ft [44] ✗ ✓ 7.7 8.1 - -
WavLM Base+ [45] ✗ ✓ - 8.3 - -
WavLM Base+ [45] ✓ ✓ - 7.6 - -
TSE-CLN [45] ✓ ✓ 7.1 7.6 - -
C-HuBERT LARGE [35] ✗ ✓ 6.6 7.8 - -
SOT-Conformer ✗ ✓ 6.8 7.0 15.0 14.7
GEncSep (this study) ✗ ✓ 6.4 6.6 13.3 13.1

from “SOT” (comparison between Exp. 7 and Exp. 8). The
“EncSep” did not show any improvement on Libri2Mix (com-
parison between Exp. 7 and Exp. 9). Compared with the noisy
two-speaker condition, the “SOT” already had strong abilities
for encoding the clean two-speaker features. CTC helped
the encoder improve its encoding capabilities in more com-
plex scenarios. The proposed “EncSep” still significantly
improved the three-speaker conditions (p-value < 0.01, com-
parison between Exp. 7 and Exp. 9). The experimental results
for “GEncSep” suggested that providing the separated em-
bedding also helped the decoding under clean conditions,
especially for three-speaker conditions (all the Libri2Mix and
Libri3Mix evaluation sets are significantly improved from
“SOT”, p-value < 0.01, comparison between Exp. 7 and
Exp. 12).

We compared several noise robust end-to-end ASR sys-
tems in the literature (after 2020) in Table 3. It should be
emphasized that although the proposed method showed com-
pelling performance in the end-to-end style for multi-speaker
ASR, there is still a gap compared to the systems with pipeline
systems (speech separation front-end with recognizer, TSE-
Whisper) under noisy two-speaker conditions. Another pos-
sible reason for such a gap is that whisper’s training data
is massive, while other ASR back-ends only use the noisy
Libri2Mix training set. For clean sets, the advantages of the
front-end did not perform as well as the “SOT-Conformer”.

Compared with “SOT-Conformer”, the proposed GEncSep
had significant performance improvement (p-value < 0.05).
Compared with other methods, the SOT-based multi-speaker
ASR system has advantages for more speakers.

5. CONCLUSIONS AND FUTURE WORKS

In this paper, we focused on improving the serialized output
training (SOT) for ASR. We first proposed the overlapped
encoding separation (EncSep) to fully utilize the benefits of
the CTC and attention hybrid loss. The experimental results
on Libri2Mix and Libri3Mix datasets show that the single-
speaker encoding can be separated from the overlapped en-
coding. The CTC losses with separator benefit the encoder
representation. Then, we proposed the serialized speech in-
formation guidance SOT (GEncSep) to further utilize the sep-
arated information. GEncSep further improved performance
with the separated embeddings for decoding. Compared with
the clean Libri2Mix and Libri3Mix, the proposed method has
more significant advantages over the more complex, noisy
Libri2Mix and Libri3Mix. As a result, the proposed GEnc-
Sep had more than 12% and 9% relative improvement for the
noisy Libri2Mix and Libri3Mix evaluation sets compared to
the original SOT. In the future, we will make the system use
different information sources by fusing the overlapped and
separated embeddings.
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