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ABSTRACT
This paper describes a statistical method for estimating musical
scores for lead, bass, and rhythm guitars from polyphonic audio
signals of typical band-style music. To perform multi-instrument
transcription involving multi-pitch detection and part assignment, it
is crucial to formulate a musical language model that represents the
characteristics of each part in order to solve the ambiguity of part
assignment and estimate a musically-natural score. We propose a
factorial hidden semi-Markov model that consists of three language
models corresponding to the three guitar parts (three latent chains)
and an acoustic model of a mixture spectrogram (emission model).
The language model for rhythm guitar represents a homophonic
sequence of musical notes (chord sequence) and those for lead and
bass guitars represent a monophonic sequence of musical notes in a
higher and lower frequency range respectively. The acoustic model
represents a spectrogram as a sum of low-rank spectrograms of the
three guitar parts approximated by NMF. Given a spectrogram, we
estimate the note sequences using Gibbs sampling. We show that our
model outperforms a state-of-the-art multi-pitch detection method
in the accuracy and naturalness of the transcribed scores.

Index Terms— Automatic music transcription, multi-pitch esti-
mation, multi-instrument transcription, HSMM, and NMF.

1. INTRODUCTION
Transcribing a musical score from an audio signal is a fundamen-
tal and challenging problem in music information processing [1].
From a practical viewpoint, it is important to develop a transcrip-
tion method for band music to facilitate widely-enjoyed cover per-
formances. A typical band playing popular music (e.g., The Beatles)
consists of vocal, several guitars, and drum parts. Transcription of
vocal and drum parts have each been studied extensively, and high
accuracies have been reported [2–7]. We therefore focus on accom-
paniment parts that are typically played by three guitars (lead, bass,
and rhythm guitars).

Accompaniment-part transcription for band music is a challeng-
ing task because multi-pitch detection and part assignment of each
note are both required. A major approach to multi-pitch detection
is to use probabilistic latent component analysis (PLCA) or non-
negative matrix factorization (NMF) based on the sparseness and
low-rankness of source spectrograms. For part assignment, these
methods have been extended to use pre-learned spectral templates of
multiple instruments [8–13]. More recently, end-to-end neural net-
works have been applied successfully to executing multi-pitch de-
tection and part assignment simultaneously [14, 15].
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sity Foundation.
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Fig. 1. A factorial hidden semi-Markov model (FHSMM) that rep-
resents the generative process of audio signals of three guitar parts
of band music.

Since most of the previous methods rely on the timbral charac-
teristics of instruments, they struggle with band music with multiple
instruments having similar timbre (e.g., two guitars). Recently, at-
tempts have been made to incorporate a music language model rep-
resenting a musical grammar (e.g., sequential dependency of chords
and musical notes) to complement the acoustic model in such dif-
ficult situations. Although Sigtia et al. [14] proposes an end-to-
end polyphonic transcription method based on a recurrent neural
network (RNN)-based language model, the model’s effect is essen-
tially smoothing since it is defined at the frame level. In order to
get well-formed transcriptions, as they mentioned, a beat-level lan-
guage model is considered to be effective. Schramm et al. [16] com-
bines a PLCA-based acoustic model with a hidden Markov model
(HMM)-based musical language model (also defined at the frame
level), where multiple vocal parts were treated independently.

In this paper, we propose a transcription method for the accom-
paniment part of band music based on the beat-level sequential char-
acteristics of accompanying instruments. We assume that three kinds
of guitars—lead, bass, and rhythm—are used in band music and
have different sequential characteristics, as listed in Table 1. Our
method uses a factorial hidden semi-Markov model (FHSMM) [17–
19] that consists of three language models (semi-Markov models),
corresponding to the three guitar parts, and an NMF-based acous-
tic model of a mixture spectrogram (Fig. 1). The language model
for the rhythm guitar represents a homophonic sequence of musical
notes (chord sequence), while those for the lead and bass guitars rep-
resent a monophonic sequence of musical notes in a higher or lower
frequency range respectively. The acoustic model represents a spec-
trogram as a sum of the spectrograms of the three guitar parts, each
of which is represented as a low-rank matrix obtained by the prod-
uct of an activation vector and basis spectra. A key feature of the
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Table 1. The characteristics of thee guitar parts.
Part Sequence Frequency range Rhythm
Lead Monophonic Middle - High Complex
Bass Monophonic Low Complex
Rhythm Homophonic Wide Simple

acoustic model is that only one of the basis spectra is allowed to be
activated in each tatum in each guitar part. Given a mixture spec-
trogram as observed data, the basis spectra, activations, and latent
chains are statistically estimated using Gibbs sampling. The musical
score for each guitar is then obtained by using the Viterbi algorithm.

A major contribution of this study is to achieve joint transcrip-
tion of multiple musical instruments that have similar timbral char-
acteristics. More specifically, we propose an integrated language and
acoustic model that can describe beat-level symbolic musical gram-
mar and dependency between multiple instrument parts. We also
show that the initialization problem of the NMF-based model can be
improved by a support from a DNN-based model, which has strong
capability of expressing acoustic signals. We achieve an improve-
ment on the accuracy, which is an important step towards developing
a practical transcription method that can be used for popular music.

2. PROPOSED METHOD

Our method jointly performs multi-pitch estimation and part assign-
ment in a unified framework. We formulate a generative model of
a music spectrogram and the corresponding musical score and then
solve the inverse problem. That is, given a music spectrogram, we
estimate the score described as latent variables in the model. The
problem is defined as follows:

Input: The magnitude spectrogram of a target signal X 2 RF⇥T
+

and 16th-note-level tatum times
Output: Musical scores of the three guitar parts

Here, F is the number of frequency bins, T is the number of time
frames. In this paper we assume that the time signature of the target
signal is 4/4.

2.1. Probabilistic Factorial Modeling
We represent a music spectrogram X 2 RF⇥T

+ as a sum of the spec-
trograms XR,XL, and X

B 2 RF⇥T
+ of the rhythm, lead, and bass

guitars (Fig. 1):
xft = xR

ft + xL
ft + xB

ft. (1)

The generative processes of XR, XL, and X
B are represented by

rhythm, lead, and bass guitar models, respectively. In each guitar
model, the corresponding musical score is represented as a latent
chain of variables, whose generative process is described by a semi-
Markov model. Given the three chains, the spectrogram X

R, XL,
and X

B are generated by an NMF-based acoustic model conditioned
on the musical score. Finally, the observed spectrogram X is gener-
ated according to Eq. (1). The generative process for each guitar part
is described as a hidden semi-Markov model (HSMM) as explained
below. The total model is a factorial HSMM with three latent chains.

2.1.1. Language Model
We formulate a rhythm guitar HSMM, representing the generative
process of XR, and lead and bass guitar conditional HSMMs, rep-
resenting the generative process of XL and X

B given the chord se-
quence specified by rhythm guitar (Fig. 2). For convenience, “?”
will be used to represent “L” (lead guitar) or “B” (bass guitar) and
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Fig. 2. The generative process of spectrograms for lead/bass guitar
based on a conditional HSMM. ? indicates lead (L) or bass (B).

“•” will be used to represent “R” (rhythm guitar), “L”, or “B”.
The latent chain of the rhythm guitar is specified by a sequence of
chord symbols Z

R = {zR1 , . . . , zRNR} with relative onset positions
U

R = {uR
1 , . . . , u

R
NR}, where NR is the number of chords, zRn

takes one of 24 values of {C, . . . ,B} ⇥ {major,minor}, and uR
n

takes an integer from 0 to 15 indicating a position on the 16th-note-
level tatum grid in a measure. Likewise, the latent chain of the lead
or bass guitar’s HSMM is specified by a sequence of pitches Z? =
{z?1 , . . . , z?N?} with relative onset positions U? = {u?

1, . . . , u
?
N?},

where N? is the number of musical notes zLn takes one of 45 pitches
of {E2, . . . ,C6}, zBn takes one of 28 pitches of {E1, . . . ,G3}, and
u?
n takes an integer from 0 to 15.

The sequence of chord symbols ZR and the sequence of pitches
Z

? are represented by a Markov model as follows:

p
⇣
zR1 |⇡R

⌘
= ⇡R

zR1
, p

⇣
zRn |zRn�1, 

R
⌘
=  R

zRn�1,z
R
n
, (2)

p
⇣
z?1 |ZR,UR,⇡?

⌘
= ⇡?

zR1 ,z?1
, (3)

p
⇣
z?n|z?n�1,Z

R,UR, ?
⌘
=  ?

zR
⇢?(n)

,z?n�1,z
?
n
, (4)

where ⇡R
a is the initial probability of chord a,  R

a,b is the transition
probability from chord a to chord b, ⇢?(n) indicates a chord to which
musical note z?n belongs, ⇡?

c,a is the initial probability of pitch a
given chord c, and  ?

c,a,b is the transition probability from pitch a to
pitch b given chord c. This formulation is based on the fact that the
pitches of the lead and bass guitars are strongly correlated with the
chords of the rhythm guitar.

The sequence of chord onset times UR and note onset times U?

are represented by metrical Markov models [20, 21] as follows:

p(u•
n|u•

n�1,�
•) = �•

u•
n�1,u

•
n
, (5)

where �•
a,b is the transition probability from tatum position a to

tatum position b. Note that if a � b, the chord or note continues
over a bar line. The maximum duration of a chord or note is re-
stricted to the measure length (16 tatums). When combined with the
models for pitches/chords, this is a semi-Markov model because the
time unit of state transition is different from the tatum unit and the
metrical Markov model describes the distribution of sojourn times
of latent states.

2.1.2. Acoustic Model
The generative process of the spectrograms of three guitars are for-
mulated in the same way. We use the probabilistic formulation of
NMF based on the Kullback-Leibler divergence (KL-NMF) [13].
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The spectrogram of the rhythm, lead, or bass guitar part X• is gen-
erated by using a set of basis spectra W

• and an activation vector
h
• 2 RT

+. The generative process of the mixture spectrogram is
described as follows:

p(xft|Z,U,W, ht) = Poisson

 
xft

����
X

•=R,L,B

w•
f⌘•(t)h

•
t

!
, (6)

where ⌘•(t) indicates the musical note to which frame t belongs and
is determined by Z

• and U
•. Basis spectra W• are given by W

R =
{wR

C, . . . ,w
R
Bm} 2 RF⇥24

+ ,WL = {wL
E2,. . .,w

L
C6} 2 RF⇥33

+ or
W

B = {wB
E1,. . .,w

B
G3} 2 RF⇥28

+ , where w
R
� indicates the basis

spectrum of chord � and w
?
� indicates the basis spectrum of note

�. A key feature of our model is that only a single basis spectrum
specified by ⌘•(t) is activated in each frame t for generating the
spectrogram X

•.

2.2. Bayesian Formulation
To integrate the sub-models described in Sections 2.1.1, and 2.1.2,
we formulate a semi-Bayesian model given by

p(X,Y;⇥)

= p(X|Z,U,W,H)p(Z|⇡, )p(U|�)p(W)p(H), (7)

where ⇥ = {⇡R,⇡L,⇡B, R, L, B,�R,�L,�B} is parameters
that are trained in advance and Y = {Z,U,W,H} is random
variables estimated for an observed spectrogram X during runtime.
Here, Z = {ZR,ZL,ZB} and U, W, and H are defined similarly.

We introduce prior distributions p(W) and p(H) to make W

close to the template bases and make H sparse. We use gamma
priors for W as follows:

w•
fk ⇠ G

⇣
aw•

fk
, bw•

fk

⌘
, (8)

where k 2 {C, . . . ,Bm}, {E2, . . . ,C6}, or {E1, . . . ,G3} denotes
a chord or a pitch and aw and bw are the shape and rate hyperpa-
rameters. We use weak priors on W

R (aR
w and bRw are smaller than

a?
w and b?w) to handle the large variance of the rhythm guitar. The

hyperparameters are set in a way that the prior expectation of W

matches the template spectra of chords and musical notes prepared
in advance. Similarly, we use gamma priors for H as follows:

h•
t ⇠ G

�
ah•

t
, bh•

t

�
, (9)

where a•
ht

and b•ht
are hyperparameters.

2.3. Bayesian Inference
Given a music spectrogram X, we aim to calculate the posterior dis-
tribution according to Bayes’ theorem:

p(Y|X,⇥) = p(X,Y|⇥)/p(X|⇥). (10)

Since this distribution is analytically intractable, we use Gibbs sam-
pling for alternately and iteratively sampling the latent variables Z

and U, the basis spectra W, and the activations H. That is, we
get samples of G ⇢ Y from a conditional posterior distribution
p(G|Y¬G,X,⇥), where Y¬G indicates the subset of Y obtained
by removing G from Y. We henceforth do not write the dependency
on ⇥ for brevity.

2.3.1. Updating Latent Variables Z and U

To sample Z
R and U

R from p(ZR,UR|Y¬ZR,UR ,X), an effi-
cient forward filtering-backward sampling algorithm can be used.
In forward filtering, a forward message of the rhythm guitar part

↵R(zRn , u
R
n ) is calculated recursively as follows:

↵R
⇣
zR1 , u

R
1

⌘
= p
⇣
zR1
⌘
= ⇡R

zR1
, (11)

↵R
⇣
zRn , u

R
n

⌘
= p
⇣
x⌧R(n�1):⌧R(n)+1|z

R
n , u

R
n

⌘

·
X

zRn�1

X

uR
n�1

 R
zRn ,zRn�1

�R
uR
n ,uR

n�1
↵
⇣
zRn�1, u

R
n�1

⌘
, (12)

where ⌧R(n) is the last frame of the n-th chord and xa:b is
{xa, . . . , xb}.

In the backward sampling step, zRn and uR
n are sampled recur-

sively by calculating a backward message �R(zRn , u
R
n ) as follows:

�R
⇣
zRN , uR

N

⌘
= p
⇣
zRN , uR

N |X
⌘
/ ↵R

⇣
zRN , uR

N

⌘
, (13)

�R
⇣
zRn , u

R
n

⌘
= p
⇣
zRn , u

R
n |zRn+1:N , uR

n+1:N ,X
⌘

/  R
zRn ,zRn+1

�R
uR
n ,uR

n+1
↵
⇣
zRn , u

R
n

⌘
. (14)

Latent variables Z
? and U

? are updated similarly except that the
transition probability  R

a,b is replaced with  ?
c,a,b.

2.3.2. Updating Basis Spectra W and Activations H
Similarly as the Bayesian inference of NMF [22], W and H

are sampled directly from the conditional posterior distribution
p(W,H|Z,U,X). Let �•

ft be an auxiliary variable, calculated
from the latest samples of W and H as

�•
ft =

w•
f⌘(t)h

•
t

wR
f⌘R(t)

hR
t + wL

f⌘L(t)
hL
t + wB

f⌘B(t)
hB
t

. (15)

Using �, W and H are sampled as follows:

w•
fk ⇠ G

 
a•
w +

X

t

xft�
•
ft, b•w +

X

t

h•
t

!
, (16)

h•
t ⇠ G

0

@a•
h•
t
+
X

f

xft�
•
ft, b•h•

t
+
X

f

w•
fk

1

A . (17)

2.4. Musical Score Estimation
We obtain the most likely Z

• and U
• by the Viterbi algorithm and

the final estimate of H by taking the mean of the posterior distribu-
tion in Eq. (17). Musical scores for the three guitar parts are esti-
mated with these variables. The musical score for the lead or bass
guitar can be obtained from the pitches Z? and onset times U?. Note
that a series of musical notes with the same pitch can be represented
by the self-transitions (e.g., zLn�1 = zLn = C3). On the other hand,
for the rhythm guitar part, we need to determine the actual onsets
(attack times) in each region of chord symbols ZR because the same
chords can be repeated multiple times. To obtain a natural rhyth-
mic pattern within each measure, we perform template matching by
using a dictionary of rhythmic patterns (16-dimensional binary vec-
tors). The entries of the dictionary are obtained from a collection of
musical pieces. We first obtain a tentative rhythmic pattern by de-
tecting peaks in the activation H

R and then use the closest pattern in
the dictionary based on the cosine distance for estimating the score.

The variables Z, U, and H are estimated as follows. First, we
generate a sufficient amount of samples of Z, U, W, and H by
using Gibbs sampling. Second, we fix the parameters W and H with
the last sample and the maximum-a-posteriori (MAP) estimates of Z
and U are obtained by using the Viterbi algorithm. Finally, the MAP
estimate of H is obtained from the posterior distribution in Eq. (17).
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3. EVALUATION

3.1. Experimental Setup
Ten songs by The Beatles in 4/4 time consisting of rhythm, lead,
and bass guitars, vocals, and drums were used for evaluation. To
extract accompaniment sounds by suppressing the drum and vocal
sounds, we used a harmonic/percussive source separation method [2]
and a singing voice separation method [5]. The tatum-level chord
label accuracy was measured for the rhythm guitar and the tatum-
level recall and precision rates and F-measure were measured for
the lead and bass guitars. The chord vocabulary consisted of 24 la-
bels (wR

C, . . . ,w
R
Bm) and the no chord regions were not considered.

Recall, precision, and F-measure were given by P = Ntp/Nsys,
R = Ntp/Nref , and F = 2RP/(R+ P), where Ntp is the number
of correctly-estimated pitches, Nsys the number of detected pitches,
and Nref the number of ground-truth pitches.

For comparison, we tested a state-of-the-art method for melody
and bass line estimation based on convolutional neural networks
(CNNs) [15] (called a deep saliency method) for transcribing the
lead and bass guitar parts. For transcribing the rhythm guitar part,
we tested a state-of-the-art chord estimation method based on CNNs,
(Madmom [23]). Since the three guitar parts are estimated at the
frame level, the estimated results are quantized in the tatum level.
To investigate the sensitivity to initialization of the proposed model,
we compared random initialization (FHSMM-RND) and initializa-
tion using the results of the above methods (FHSMM-DSM).

The log-frequency magnitude spectrogram of a music signal was
obtained by the constant-Q transform [24] with 96 bins/octave, a
shifting interval of 11 ms, and a frequency range from 32.7 Hz (C1)
to 8372.0 Hz (C9). The tatum times were estimated in advance by
using a beat tracking method [23]. The hyperparameters aR

w and b
R
w

of the prior on W
R were determined using the spectra of 24 low-

position chords played by an acoustic guitar. The hyperparameters
a
?
w and b

?
w of the prior on W

? were determined in a similar way
by using the spectra of 45 pitches from E2 to C6 or 28 pitches from
E1 to G3. These reference spectra were made by MIDI synthesizers.
The hyperparameters of activations were set to ahR

t
= ah?

t
= 1,

bhR
t

= bh?
t

= 1. The uniform initial probabilities were used:
⇡L = 1/45, ⇡B = 1/28, and ⇡R = 1/24. The language model pa-
rameters �,  , and a dictionary of rhythmic patterns for the rhythm
guitar were learned in advance from 206 pieces of Japanese popular
musicby the maximum-likelihood method.

3.2. Experimental Results
Table 2 shows the models’ performances on multi-guitar transcrip-
tion. Note that P , R, and F can never be 100% because the lead and
bass guitars were assumed to be monophonic here, but this assump-
tion does not hold true in reality, e.g., the lead guitar sometimes plays
chords. FHSMM-DSM consistently outperformed the deep saliency
method in the transcription of the lead and bass guitars. As shown
in Fig. 3, unnatural musical notes such as short insertion errors esti-
mated by the deep saliency method were significantly reduced by the
proposed method. This shows the effectiveness of the language mod-
els, which induce musical naturalness of estimated scores. FHSMM-
RND, on the other hand, underperformed Madmom and the deep
saliency method because the NMF-based acoustic model was sen-
sitive to initialization. We found that the proposed method of joint
guitar transcription can find more accurate scores than independent
transcription methods if it is appropriately initialized. The perfor-
mance of chord estimation obtained by FHSMM-DSM were almost
same as that obtained by Madmom. This is probably because good
local optima were already found by Madmom.

Table 2. Performance of transcription for three guitar parts.
Method Part P(%) R(%) F(%) Chord

Deep saliency [15] Lead 32.4 19.0 22.8 –
Bass 57.0 61.4 58.8 –

Madmom [23] Rhythm – – – 74.8
Lead 20.8 12.8 15.0 –

FHSMM-RND Bass 34.3 36.6 35.3 –
Rhythm – – – 48.2
Lead 34.7 19.8 24.1 –

FHSMM-DSM Bass 57.7 62.2 60.0 –
Rhythm – – – 74.8
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Fig. 3. Musical scores of the lead and bass guitars estimated by the
deep saliency method and the proposed method initialized by the
deep saliency method for “Don’t Bother Me.”

Although we achieved an improvement on the transcription ac-
curacy, there is still much room for improving the performance of the
lead guitar transcription. First, it is necessary to deal with rests be-
cause the lead guitar often has rests during vocal parts. It is also nec-
essary to relax the strong constraints that the lead guitar only plays
a monophonic melody and that the rhythm guitar is described with a
single set of bases. Another limitation is that the Markov model does
not have sufficient capability of expressing the long-term dynamics
of musical notes. We plan to extend a deep generative model such
as a variational autoencoder (VAE) [25] or a generative adversarial
network (GAN) [26] for dealing with time-series data.

4. CONCLUSION

We have described a statistical method to estimate the musical scores
of lead, bass, and rhythm guitars from a polyphonic audio signal
of typical band-style music. Here, we proposed a unified Bayesian
framework for integrating language and acoustic models of multi-
instrument music based on a factorial hidden semi-Markov model.
We have shown that the unified model improves the accuracy and
naturalness of the transcribed scores. We focused on band-style pop-
ular music in this paper, but our framework can be applied to various
kinds of music transcription involving multi-pitch detection and part
assignment. In piano transcription, for example, more reasonable
estimations could be obtained by executing the multi-pitch detec-
tion and separation of right-hand and left-hand streams jointly [27].
In the future, we plan to develop a system that generates a com-
plete score consisting of vocal, guitar, and drum parts by combining
the work described in this paper with automatic vocal (melody) and
drum transcription methods.
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Krebs, and Gerhard Widmer, “Madmom: A new python au-
dio and music signal processing library,” in Proceedings of
the ACM International Conference on Multimedia, 2016, pp.
1174–1178.

[24] Christian Schörkhuber and Anssi Klapuri, “Constant-Q trans-
form toolbox for music processing,” in Proceedings of the
Sound and Music Computing Conference (SMC), 2010, pp. 3–
64.

[25] Diederik P. Kingma and Max Welling, “Auto-encoding varia-
tional Bayes,” in Proceedings of the International Conference
on Learning Representations (ICLR), 2014.

[26] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing
Xu, David Warde-Farley, Sherjil Ozair, Aaron Courville, and
Yoshua Bengio, “Generative adversarial nets,” in Proceed-
ings of the Advances in Neural Information Processing Systems
(NIPS), 2014, pp. 2672–2680.

[27] Eita Nakamura, Kazuyoshi Yoshii, and Shigeki Sagayama,
“Rhythm transcription of polyphonic piano music based on
merged-output HMM for multiple voices,” IEEE/ACM Trans-
actions on Audio, Speech, and Language Processing, vol. 25,
no. 4, pp. 794–806, 2017.

240


		2019-03-18T11:02:46-0500
	Preflight Ticket Signature




