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Abstract
We investigate the impact of robot appearance on users’ spoken
behavior during real-world interactions by comparing a human-like
android, ERICA, with a less anthropomorphic humanoid, TELECO.
Analyzing data from 42 participants at SIGDIAL 2024, we extracted
linguistic features such as disfluencies and syntactic complexity
from conversation transcripts. The results showed moderate ef-
fect sizes, suggesting that participants produced fewer disfluencies
and employed more complex syntax when interacting with ER-
ICA. Further analysis involving training classification models like
Naïve Bayes, which achieved an F1-score of 71.60%, and conduct-
ing feature importance analysis, highlighted the significant role of
disfluencies and syntactic complexity in interactions with robots of
varying human-like appearances. Discussing these findings within
the frameworks of cognitive load and Communication Accommo-
dation Theory, we conclude that designing robots to elicit more
structured and fluent user speech can enhance their communicative
alignment with humans.

CCS Concepts
•Human-centered computing→ Empirical studies in HCI;
Field studies.
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1 Introduction
One of the key objectives of conversational robots is to achieve
human-level interaction. To achieve this, previous research has
explored various aspects, including reasoning [10, 60], empathy
[14, 40], and personality [30, 61], to enable robots to produce more
human-like responses. Additionally, non-verbal interaction features,
such as backchanneling [1, 21], head nodding [4, 64], and gestures
[2, 36, 56], have been extensively studied to enhance the naturalness
of human-robot interactions.

Besides these communication elements, the appearance of robots
remains a critical factor in shaping user perceptions and behavior.
A robot’s appearance strongly influences the user’s first impres-
sion, particularly regarding its perceived level of human-likeness.
Previous studies have shown that robots with more human-like ap-
pearances can enhance perceived warmth [26, 32], empathy [62, 66],
and social presence [49, 53], demonstrating their effectiveness in
various social and cultural settings [29, 41, 59, 63].

However, research on the effect of robot appearance on user
behavior faces several limitations. First, many studies involve par-
ticipants interacting with images or videos of robots rather than
real, physical robots, which may overlook the impact of social pres-
ence during interactions [5, 23, 48]. Second, experiments often rely
on teleoperated or Wizard-of-Oz (WoZ) methodologies, where the
robot’s behavior is controlled by a human operator [51, 53, 58].
Such setups may not fully reflect the dynamics of interactions in au-
tonomous systems. Third, most studies are conducted in laboratory
settings, where participants are recruited for controlled experi-
ments [6, 47, 57]. These conditions may differ significantly from
real-world scenarios, potentially affecting user behavior. Finally,
prior research often relies on simple metrics (e.g., conversation
length, informativeness, etc.) through self-reported scales (e.g., 7-
point Likert scale [31]) [24, 37, 65, 66], leaving space for deeper
analysis through other perspectives.
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Figure 1: Photo of interview dialogue with ERICA by SIG-
DIAL participant

To address these gaps, we investigate how robot appearance
affect user spoken behavior during real interactions with physi-
cal, fully autonomous conversational robots at an international
conference. This setting allows us to capture user responses that
closely resemble everyday behavior, providing insights into how
appearance influences user speech in genuine social contexts. We
leverage various features in natural language processing (NLP) and
conversation analysis, derived from a linguistic perspective, to offer
a fine-grained analysis of user behavior. Furthermore, we devel-
oped a machine learning model capable of predicting the robot’s
human-likeness based on observed user behavior.

Our contributions are twofold:

• We investigated how the human-likeness of an autonomous
conversational robot influenced user spoken behavior in
real-world interactions, from linguistic perspective.

• We developed a predictive model that classifies a robot’s
human-likeness based upon a user’s spoken behavior, illumi-
nating important linguistic cues through feature importance
analysis.

2 Dataset
2.1 Conversational Robots
In this study, we employed two robots with different levels of
human-likeness:

• ERICA [17, 22, 25]: An android robot designed to resemble
an adult female (see Figure 1).

• TELECO [20, 27]: A humanoid robot featuring an OLED
display for its face and simplified joint structures (see Figure
2).

To isolate the impact of appearance on user behavior, we im-
plemented the same human-like spoken dialogue system for both
robots [39]. They used identical dialogue behaviors, gestures, and
facial expressions to ensure any observed differences could be at-
tributed primarily to the differences in appearances. The system
architecture can be found in Figure 3.

Figure 2: Photo of interview dialogue with TELECO by SIG-
DIAL participant

2.2 Data Collection
We conducted our study at SIGDIAL 20241, an international con-
ference attended by over 160 participants. As shown in Figure 1
and Figure 2, attendees took part in brief, one-on-one interviews
with either ERICA or TELECO, each lasting two to three minutes.
We selected an interview approach because it is both engaging
and well-suited to the conference setting, allowing us to observe
how human-likeness might influence user behavior under natural
interaction conditions.

No formal questionnaires were administered to maintain a ca-
sual atmosphere and natural interaction experience. Consent was
obtained through informing the attendees about the study at the
conference’s opening session and through clearly displayed notices
in the interview room, that only the transcripted dialogue, captured
by Automatic Speech Recognition (ASR), would be recorded. Ac-
cordingly, our analysis focuses on user spoken behavior extracted
from the interview transcripts to examine how variations in the
robots’ appearances affect user interactions.

3 User Behavior Analysis
3.1 Behavior Metrics
We investigated multiple dimensions of user spoken behavior, each
reflecting different linguistic constructs. We grouped the metrics
into four main categories—(1) Linguistic, (2) Dialogue, (3) Emo-
tion, and (4) Behavioral Mimicry. Below, we outline the primary
measures:

(1) Linguistic. This category quantifies the structural and lexical
complexity of user responses:

• Number of Words and Utterance Length: Total word count
and the average number of words per utterance, indicating
how extensively or succinctly participants responded.

• Lexical Diversity: The ratio of unique words to total words,
widely considered a hallmark of expressive vocabulary and
verbal fluency.

1https://2024.sigdial.org/

https://2024.sigdial.org/
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Figure 3: Overall architecture of the interview system implemented in our study. This comprehensive system architecture
includes modules for real-time automatic speech recognition (ASR), prosodic information extraction, language understanding,
and user fluency adaptation, among others. Central to the system is the dialogue manager, which coordinates turn-taking,
response generation, and conversation repair. Also included are the text-to-speech, gesture generation, and lipmotion generation
components, enhancing the robots’ interactive capabilities.

• Syntactic Complexity: Measured by dependency-parse depth
through SpaCy2 , reflecting how participants layered or em-
bedded phrases within each sentence (a higher average sug-
gests more complex syntax).

(2) Dialogue. This component examines user interactions and
response dynamics:

• Number of disfluencies and disfluencies ratio: Counting inter-
jections (e.g., “um,” “uh”) and consecutive repeated words. In-
terjections is calculated using the en_core_web_lg model3
in spaCy 4. Repeated words is calculated through bi-gram
models in NLTK library5.

• Politeness Score: We evaluated whether user politeness was
influenced by the robots appearance. The score is derived
from an XLM-RoBERTa-based classification of polite vs. im-
polite utterances [52], normalized between 0 and 1.

• Word Commonness: We evaluated how common word usage
was influenced by the robots appearance. By using the Brown
Corpus [7] as a reference corpus, we built a commonness
score calculator based on the normalized frequency. Then
we computed the final score through the average common-
ness score for all words in a single utterance, indicating the
“commonness" of a user’s vocabulary.

• Personal Pronouns Ratio: We tracked whether users referred
to the robot using personal pronouns (e.g., “you,” “he,” “she”),
or impersonal pronouns (e.g., “it,” “the robot”), which can
shed light on animacy attribution and self-reference patterns
[38, 43].

• Hedging Word Ratio: We evaluated user hedging behavior
based the robot’s appearance. Hedging involves words or
phrases expressing uncertainty or non-commitment (e.g.,

2https://github.com/explosion/spaCy
3https://spacy.io/models/en#en_core_web_lg
4https://github.com/explosion/spaCy
5https://github.com/nltk/nltk

“maybe,” “seem,” “usually”). We detected such terms using a
predefined list6.

(3) Emotion. Focused on the emotional content of user interac-
tions:

• Sentiment Score: To evaluate whether users’ utterances con-
veyed positive or negative sentiment, we used SiEBERT [19].
We computed the sentiment score through polarity calcula-
tion (positive sentiment score - negative sentiment score).
We then normalized the value to a range between 0 and 1,
where higher scores indicate more positive sentiment.

• Emotion Score (Joy, Sadness, Anger, Fear, Disgust, and Sur-
prise): We implemented the likelihood estimates assigned
by a DistilRoBERTa-based emotion classifier [18], clarifying
which emotions predominated in each user’s speech.

(4) Behavioral Mimicry. Investigates the extent of user mimicry
of robot behavior, a key indicator of empathy and social bonding
[15, 42, 50]:

• Lexical Mirroring: Overlap in word choice between the user’s
and robot’s utterances, normalized by the user’s total number
of words.

• Semantic Mirroring: A BERTScore-based measure indicating
semantic similarity between user and robot dialogue.

• Syntactic Mirroring: Assessed via POS-based cosine simi-
larity, capturing how closely users’ grammatical structures
mirror the robot’s output.

3.2 Result
A total of 42 participants interacted with our robots during the con-
ference, 24 with ERICA and 18 with TELECO. Results are detailed in
Table 1. Given our small sample size, we focused on practical signif-
icance, assessing effect sizes using Rank-biserial correlations rather
than relying solely on statistical significance, which is less sensitive
6https://github.com/words/hedges

https://github.com/explosion/spaCy
https://spacy.io/models/en#en_core_web_lg
https://github.com/explosion/spaCy
https://github.com/nltk/nltk
https://github.com/words/hedges
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Behavior ERICA TELECO Effect Size
(Linguistic)
# of Words 143.46 (66.17) 109.39 (50.81) 0.31
Utterance Length 10.32 (5.02) 8.48 (3.92) 0.17
Lexical Diversity 0.59 (0.09) 0.61 (0.09) 0.12
Syntactic Complexity 2.81 (1.01) 2.20 (0.50) 0.41
(Dialogue)
# of Disfluencies 7.92 (6.51) 12.78 (8.89) 0.42
Disfluencies Ratio 0.61 (0.59) 1.05 (0.78) 0.41
Politeness Score 0.63 (0.15) 0.60 (0.13) 0.10
Word Commonness 6.11 (0.40) 5.91 (0.44) 0.26
Personal Pronouns Ratio 2.74 (3.23) 1.89 (1.64) 0.10
Hedging Word Ratio 1.15 (0.63) 0.94 (0.59) 0.22
(Emotion)
Sentiment Score 0.67 (0.18) 0.64 (0.15) 0.13
Joy 0.14 (0.08) 0.11 (0.09) 0.28
Sadness 0.03 (0.02) 0.04 (0.03) 0.33
Anger 0.06 (0.02) 0.07 (0.02) 0.21
Fear 0.19 (0.08) 0.20 (0.07) 0.15
Disgust 0.08 (0.03) 0.08 (0.04) 0.05
Surprise 0.03 (0.02) 0.03 (0.02) 0.02
(Behavioral Mimicry)
Lexical Mirroring 0.36 (0.07) 0.35 (0.11) 0.02
Semantic Mirroring 0.51 (0.02) 0.50 (0.02) 0.19
Syntactic Mirroring 0.29 (0.09) 0.28 (0.08) 0.01

Table 1: Comparative analysis of user behaviors based on
robot appearance. Data presented includes the mean and
standard deviation (in parentheses) for each behavior metric
across the robots, accompanied by the computed effect sizes
through Rank-biserial correlations.

to sample size limitations [54]. Additionally, we performed Mann-
Whitney U tests; several features such as number of disfluencies (p
= 0.022), disfluency ratio (p = 0.027), and syntactic complexity (p =
0.024) showed moderate unadjusted p-values. However, achieving
statistical significance after Bonferroni correction (𝛼 = 0.002) was
challenging due to multiple comparisons (21 in total).

Key findings include notable differences in disfluencies and syn-
tactic complexity between interactions with ERICA and TELECO.
Participants exhibited more disfluencies with TELECO both in total
count (12.78 vs. 7.92, effect size = 0.417) and ratio (1.05 vs. 0.61, ef-
fect size = 0.405). They also used more complex syntax with ERICA
(2.81 vs. 2.20, effect size = 0.405). Lesser variations were observed
in the number of words (143.46 vs. 109.39, effect size = 0.31), word
commonness (6.11 vs. 5.91, effect size = 0.26), and hedging word
ratio (1.15 vs. 0.94, effect size = 0.22).

Regarding affective content, both groups reported positive senti-
ment scores (0.67 vs. 0.64), with slightly higher joy levels observed
with ERICA (0.14 vs. 0.11). Emotional expressions such as anger,
sadness, fear, surprise, and disgust showed minimal differences
between the groups. Behavioral mimicry across lexical, semantic,
and syntactic dimensions showed negligible differences (effect sizes
= 0.02, 0.19, and 0.01, respectively).

4 Predictive Model
4.1 Experimental Setup
In addition to user behavior analysis, we developed a predictive
model to identify whether a participant interacted with the more
human-like robot (ERICA) or the less human-like robot (TELECO),
based solely on metrics of spoken behavior detailed in Section 3.1.
We selected input features for the model based on their differences
and effect sizes both exceeding 0.1, which include the number of
words, utterance length, syntactic complexity, number and ratio of
disfluencies, word commonness, and hedging word ratio, highlight-
ing discernible variations between the two datasets. Results using
all user behavior metrics as input features are presented in Table 4
in 6 as part of an ablation study.

We evaluated a range of machine learning classifiers, including
Random Forest [9], Gradient Boosting[13], and Naïve Bayes [46],
along with a random baseline, employing default hyperparameters
for each algorithm. The dataset was divided into an 80% training set
and a 20% test set. To reduce bias and validate model robustness, we
conducted 3-fold cross-validation on the training set and repeated
the training/validation process ten times with different random
seeds to ensure reproducibility and assess stability. We averaged
the performance metrics—accuracy, macro-average precision, recall,
and F1-score—across folds and seeds, compiling the final perfor-
mance metrics. Detailed results for each seed are documented in
Table 5 in Appendix 6.

Model Accuracy Precision Recall F1-score
Random Baseline 48.57 48.29 47.94 46.76
Random Forest 64.29 64.33 64.20 63.32
Gradient Boosting 63.10 63.56 63.21 61.98
Naïve Bayes 72.38 73.49 72.79 71.60

Table 2: Predictive Model Evaluation Result [%]

4.2 Feature Importance Analysis
In addition to model development, we explored how specific fea-
tures influence our predictive models using two suggested inter-
pretability methods [35]:

Permutation Feature Importance (PFI) [3]. This model-agnostic
technique evaluates the impact of individual features by measur-
ing the reduction in model performance (e.g., F1-score) when the
values of a feature are randomly shuffled in the test set. Significant
performance drops indicate critical feature importance.

SHapley Additive exPlanations (SHAP) [34]. SHAP provides a
detailed measure of each feature’s contribution to individual pre-
dictions, where we use the TreeExplainer [33] to calculate SHAP
values in this study.

4.3 Results
Table 2 shows that the Naïve Bayes model outperformed all other
evaluated algorithms with the highest F1-score (71.60%), signifi-
cantly exceeding the random baseline (46.76%) and other methods
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such as Random Forest, and Gradient Boosting (61-63%). This under-
scores that linguistic features effectively differentiate participants’
perceptions of robot human-likeness.

Feature impact analysis on the Naïve Bayes model revealed that
syntactic complexity was the most influential predictor, contribut-
ing 22.51% in SHAP and 0.079 in PFI. Other significant features
included the number of words (17.17% in SHAP, 0.047 in PFI) and
various disfluency measures, with number and ratio contributing
15.34% and 15.57% in SHAP and 0.031 and 0.026 in PFI, respec-
tively. These insights are visualized in Figures 4 and summarized
in Table 3.

Behavior Permutation Feature
Importance (PFI)

SHAP
Mean Percentage

Syntactic Complexity 0.079 (0.050) 0.102 22.51
Number of Words 0.047 (0.035) 0.078 17.17
Disfluencies Ratio 0.026 (0.036) 0.070 15.57
Number of Disfluencies 0.031 (0.035) 0.069 15.34
Word Commonness 0.053 (0.041) 0.056 12.32
Utterance Length 0.003 (0.028) 0.045 10.02
Hedging Word Ratio 0.003 (0.031) 0.032 7.07

Table 3: Feature importance analysis for the Naïve Bayes
model using Permutation Feature Importance (PFI) and
SHapley Additive exPlanations (SHAP). The table displays
the mean SHAP values and their respective contribution
percentages, along with the PFI scores (mean and standard
deviation in parentheses), sorted by their contribution to the
model’s predictive performance.

5 General Discussion
This section reflects on key findings from the analysis and modeling
results concerning disfluencies and syntactic complexity metrics.
Notably, users engaged with ERICA, the more human-like robot, ex-
hibited more complex syntax as detailed in Section 3.2. This aligns
with the predictive model results in Section 4.3, where syntactic
complexity emerged as a significant predictor. This observationmay
be attributed to the perceived cognitive capabilities of the robots,
influenced by their level of human-likeness. According to Commu-
nication Accommodation Theory, individuals tend to adjust their
communication style to match their conversational partner’s per-
ceived attributes or capabilities [16]. Previous studies also indicate
that more human-like robots are often ascribed higher cognitive
functions [12]. Thus, ERICA with a human-like appearance will
lead users to adopt more complex language, akin to human-human
interactions, under the assumption that ERICA can process such
communication.

In contrast, disfluencies demonstrated an opposite trend, with
users exhibiting more disfluencies when interacting with the less
human-like robot, TELECO. This phenomenon may be attributed to
increased cognitive load, which refers to the utilization of working
memory resources during cognitive tasks. Cognitive psychology
suggests that unfamiliar tasks require more information processing,
which can escalate cognitive load. Prior research has indicated that
heightened cognitive load can manifest through various temporal
characteristics such as altered speech rate and increased ratio of

pauses, or through interactions with less legible text, leading to
a rise in disfluency rates [8, 28]. In our context, TELECO’s less
human-like appearance might have been perceived as unfamiliar
or unnatural compared to typical human interactions, necessitat-
ing greater cognitive effort and consequently, higher disfluency
rates. This observation aligns with previous findings where interac-
tions with autonomous systems, characterized by less human-like
features, elicited more disfluencies than more anthropomorphic
Wizard-of-Oz (WoZ) conditions [11].

An intriguing outcome from our study relates to the behavior
mimicry in Section 3.2, where no significant differences in mimicry
levels were found across human-likeness levels, contrasting with
prior research that suggests humans often mimic robots during
interactions [45, 55]. This deviation could be explained by the con-
text of the interactions, which were structured as interviews rather
than dynamic social engagements. Previous literature indicates
that mimicry is more prevalent in emotionally charged real-life
interactions, where empathy and social bonding are more critical
[15, 42, 44, 50]. The controlled interview setting of our study likely
limited emotional engagement, thus reducing the occurrence of
mimicry.

6 Conclusion
This study investigated the impact of a robot’s human-likeness
appearance on user speech patterns during real-world, fully au-
tonomous interactions at an international conference. Data from
42 participants, engaging with the highly anthropomorphic ER-
ICA and the more basic TELECO, were analyzed and modeled. The
results align across experiments, showing that linguistic markers
such as disfluencies, syntactic complexity, and utterance length vary
noticeably between interactions with the two robots, demonstrat-
ing moderate effect sizes and substantial contributions in feature
importance analyses. These findings suggest that these linguistic
features are influential in shaping user perceptions of a robot’s
human-likeness. We further explore the relationship between these
features and robot human-like appearance from a cognitive sci-
ence perspective, linking increased syntactic complexity with more
human-like robots via Communication Accommodation Theory,
and higher disfluencies with less human-like robots due to greater
cognitive load.

Looking forward, this research could be extended in several ways.
Increasing the sample size and employing more controlled manip-
ulations of robot appearances could further validate these initial
findings. Moreover, exploring factors beyond appearance—such as
enhanced AI capabilities or different interaction methods (Wizard-
of-Oz vs. autonomous)—could enrich our understanding of human-
likeness in robots. Additionally, expanding our analytical modalities
to include non-verbal cues like facial expressions and speech tone
could offer a more comprehensive view of how robot appearance af-
fects human interactions. Integrating such non-verbal signals would
provide a broader context for understanding the dynamic between
robot embodiments and human behavior. Ultimately, the nuanced
understanding of syntax and disfluencies revealed by our study
could inform the design of robots that more effectively mirror hu-
man communicative norms, thereby improving both the perceived
humanness and the quality of interactions.
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Figure 4: Distribution of SHAP values for each behavioral feature. The SHAP values, which quantify the impact on the model
output, are plotted along the x-axis against each feature on the y-axis. Each point represents an individual instance. Points in
blue indicate feature values below the average, affecting the model negatively (left of the vertical zero line), while points in
yellow denote values above the average, contributing positively to the prediction (right of the zero line).
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Appendix

Model Accuracy Precision Recall F1-score
Random Baseline 49.76 50.89 50.33 48.72
Random Forest 55.71 55.25 54.81 53.27
Gradient Boosting 53.57 52.59 52.55 50.73
Naive Bayes 57.62 59.35 58.74 56.59

Table 4: Performance evaluation of predictive models [%]
without feature selection. Best performing values for each
metric are highlighted in bold.

Model Accuracy Precision Recall F1-score
Seed 1
Random Baseline 0.33 0.34 0.33 0.33
Random Forest 0.69 0.69 0.69 0.69
Gradient Boosting 0.69 0.69 0.69 0.68
Naive Bayes 0.76 0.79 0.78 0.76
Seed 2
Random Baseline 0.52 0.57 0.54 0.51
Random Forest 0.60 0.61 0.61 0.59
Gradient Boosting 0.62 0.59 0.59 0.59
Naive Bayes 0.74 0.74 0.73 0.73
Seed 3
Random Baseline 0.55 0.57 0.56 0.53
Random Forest 0.60 0.59 0.58 0.57
Gradient Boosting 0.62 0.62 0.61 0.60
Naive Bayes 0.74 0.81 0.75 0.72
Seed 4
Random Baseline 0.48 0.44 0.45 0.44
Random Forest 0.74 0.73 0.73 0.73
Gradient Boosting 0.64 0.67 0.66 0.63
Naive Bayes 0.69 0.70 0.70 0.69
Seed 5
Random Baseline 0.48 0.46 0.47 0.46
Random Forest 0.64 0.65 0.65 0.64
Gradient Boosting 0.62 0.63 0.62 0.62
Naive Bayes 0.71 0.72 0.72 0.71
Seed 6
Random Baseline 0.40 0.40 0.41 0.40
Random Forest 0.67 0.67 0.67 0.66
Gradient Boosting 0.69 0.69 0.69 0.69
Naive Bayes 0.71 0.72 0.72 0.71
Seed 7
Random Baseline 0.40 0.38 0.38 0.38
Random Forest 0.64 0.64 0.64 0.63
Gradient Boosting 0.67 0.68 0.67 0.66
Naive Bayes 0.71 0.72 0.73 0.71
Seed 8
Random Baseline 0.45 0.46 0.46 0.42
Random Forest 0.57 0.56 0.56 0.56
Gradient Boosting 0.50 0.51 0.51 0.50
Naive Bayes 0.71 0.72 0.72 0.71
Seed 9
Random Baseline 0.69 0.68 0.69 0.68
Random Forest 0.71 0.71 0.72 0.71
Gradient Boosting 0.71 0.71 0.71 0.70
Naive Bayes 0.71 0.70 0.70 0.70
Seed 10
Random Baseline 0.55 0.53 0.52 0.52
Random Forest 0.57 0.57 0.57 0.56
Gradient Boosting 0.55 0.56 0.55 0.53
Naive Bayes 0.74 0.72 0.72 0.72

Table 5: Predictive model evaluation results [%] for each ran-
dom seed. The highest performing values for each metric per
seed are bolded.
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