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ABSTRACT

This paper describes a phase-aware joint beat and down-

beat estimation method mainly intended for popular mu-

sic with a periodic metrical structure and steady tempo.

The conventional approach to beat estimation is to train a

deep neural network (DNN) that estimates the beat pres-

ence probability at each frame. This approach, however,

relies heavily on a periodicity-aware post-processing step

that detects beat times from the noisy probability sequence.

To mitigate this problem, we have designed a DNN that es-

timates the beat phase at each frame whose period is equal

to the beat interval. The estimation losses computed at

all frames not limited to a fewer number of beat frames

can thus be effectively used for backpropagation-based su-

pervised training, whereas a DNN has conventionally been

trained such that it constantly outputs zero at all non-beat

frames. The same applies to downbeat estimation. We also

modify the post-processing method for the estimated phase

sequence. For joint beat and downbeat detection, we inves-

tigate multi-task learning architectures that output beat and

downbeat phases in this order, in reverse order, and in par-

allel. The experimental results demonstrate the importance

of phase modeling for stable beat and downbeat estimation.

1. INTRODUCTION

Rhythm analysis of music signals such as beat, downbeat,

and tempo estimation often constitutes the crucial front end

of automatic music transcription [1, 2] and music struc-

ture analysis [3]. The typical approach to beat estimation

consists of (1) computing an onset strength signal (OSS)

from a music signal and (2) detecting regularly-spaced beat

times from the OSS with autocorrelation analysis or comb

filtering [4–6]. The step (1) has recently been implemented

with a deep neural network (DNN) that outputs the proba-

bility of the presence of a beat at each frame [7–11]. In par-

ticular, convolutional neural networks (CNNs) attained the

noticeable improvement of beat estimation [7–9]. Since

the same applies to downbeat estimation, we often focus

on only beat estimation in the remainder of the paper.
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Figure 1. For beat estimation, the proposed DNN aims to

estimate a sawtooth-shaped beat phase sequence, whereas

a conventional DNN aims to estimates an impulsive beat

presence probability sequence.

The major problem of the typical approach is that the

periodic nature of beat times is not considered explicitly

in the step (1). The performance of DNN-based beat esti-

mation thus heavily depends on the periodicity-aware post-

processing step (2) that detects beat times from the noisy

probability sequence. This calls for the improved accuracy

of the raw output of a DNN used in the step (1).

To solve this problem, in this paper we propose a new

approach to beat estimation that aims to estimate not the

beat presence probability but the beat phase at each frame

(Fig. 1). Note that a sequence of beat phases is represented

as a semi-continuous sawtooth wave whose period corre-

sponds to beat intervals, whereas a sequence of beat pres-

ence probabilities as an impulse train that takes one at only

beat frames and zero at the other frames. The key advan-

tage of the phase-based representation is that all frames not

limited to beat frames give meaningful information about

the periodic beat structure. Since a DNN is usually trained

with backpropagation such that the sum of frame-level es-

timation losses is minimized, the phase-based representa-

tion would be a more suitable target for periodicity-aware

supervised training.

We also propose a post-processing method that detects

beat times from the noisy phase sequence (Fig. 2). In

recent beat estimation [7–10], a dynamic Bayesian net-

work (DBN) based on the bar-pointer model [12], which

is approximately implemented as a hidden Markov model

(HMM) [13], is used for picking beat times from a number

of peaks included in a beat probability sequence. We mod-

ify the observation model of the DBN to deal with a beat

phase sequence. The global tempo can be estimated by

identifying the most dominant frequency component from

the Fourier transform of the noisy sinusoidal wave con-

verted from the estimated phase sequence.
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Since beat and downbeat times form the hierarchical

metrical structure of music in a mutually dependent man-

ner, we investigate three multi-task learning architectures

for joint beat and downbeat estimation. More specifically,

one can (1) predict beat phases from an audio spectrogram

and then predict downbeat phases from the spectrogram

and the estimated beat phases, (2) predict the downbeat

and beat phases in this order (the reverse order of (1)), and

(3) predict both the beat and downbeat phases in parallel.

Several examples estimated by the proposed method are

available at https://phase2bdbt.github.io/.

2. RELATED WORK

Classical beat estimation methods focus on the periodicity

of a music signal with signal processing techniques [5, 6].

In recent years, DNNs have actively been used for directly

estimating the probability of the presence of a beat at each

frame, given the spectrogram or acoustic features of a mu-

sic signal. The first attempt for DNN-based beat estimation

used a long short-term memory (LSTM) network that esti-

mates a sequence of beat presence probabilities from mel

spectrograms with different window lengths [14]. More

recently, the temporal convolutional network (TCN) [15]

was shown to improve the performance with shorter train-

ing time [9]. It consists of dilated convolution layers like

WaveNet [16] originally proposed for audio synthesis such

that the receptive field of a deeper layer becomes wider ex-

ponentially to capture the long-term dependency of time-

series data. For better estimation, the TCN used in [9] has a

non-causal architecture, i.e., both the past and future input

data are used for making a prediction at the current frame,

whereas the original TCN has a causal architecture.

For tempo estimation, one can estimate the tempo from

a kind of onset strength signal (OSS) extracted from a mu-

sic signal and detect the most dominant period correspond-

ing to the tempo from the OSS with autocorrelation analy-

sis, comb filtering, or the discrete Fourier transform (DFT)

[17–19]. In the same way as beat estimation, the tempo

has recently been estimated directly from a music signal

with a DNN [20, 21], where the tempo estimation is in-

terpreted as a classification problem. Schreiber et al. [20]

attempted to estimate local tempos as well as the global

tempo. Foroughmand et al. [21] proposed a new represen-

tation of the DNN input called harmonic constant-Q mod-

ulation (HCQM) that represents the harmonic series con-

sidering tempo frequencies.

Several multi-task methods have been proposed for joint

estimation of mutually-dependent multiple kinds of metri-

cal elements. In the earliest years, Goto [22] proposed a

method based on signal processing techniques and expert

knowledge of metrical structure for real-time joint beat and

downbeat estimation. In recent years, the LSTM was used

for joint beat and downbeat estimation [10] and the TCN

was used for joint beat and tempo estimation [8], which

was extended for joint beat, downbeat, and tempo esti-

mation [7], resulting in the state-of-the-art performances.

In [7], a single TCN was shared over three tasks and was

trained with a data augmentation technique.

Logarithmic spectrogram

Feature embedding

TCN layer x 11

Decoder

Beat phase

Dynamic Bayesian network

Beat time

Discrete Fourier transform

Global tempo

Figure 2. The proposed phase-aware beat estimation fol-

lowed by tempo estimation.

3. PROPOSED METHOD

This section describes the proposed phase-aware method

for rhythm analysis. Our goal is to estimate beat and down-

beat times and the global tempo from the log-magnitude

spectrogram X ∈ R
F×T of a music signal, where F is the

number of frequency bins and T is the number of frames.

For beat estimation, we perform DNN-based phase classi-

fication (Section 3.1) followed by DBN-based peak pick-

ing (Section 3.2) and tempo estimation (Section 3.3). We

then describe three possible architectures of multi-task learn-

ing for joint beat and downbeat estimation (Section 3.4).

3.1 DNN-Based Beat/Downbeat Phase Classification

We tackle beat phase estimation in terms of a DNN-based

classification problem. In our preliminary investigation on

the Beatles dataset [23], we found that when a DNN is

used for phase regression, it often fails to decrease the es-

timation loss without careful pretraining. The beat phase

is reset to zero at a beat frame and linearly increases to 2π
until the next beat frame, i.e., the phase sequence forms

a sawtooth wave (Fig. 1). The phase resolution is set to

2π/K, i.e., the phase is quantized into K classes.

Let Zb , {zbt}
T
t=1 be a sequence of beat phases, where

z
b
t ∈ {0, 1}K is a K-dimensional one-hot vector at frame

t whose k-th element zbtk takes one when the beat phase zbt
satisfies

2π(k−1)
K

≤ zbt <
2πk
K

. Let Zd , {zdt }
T
t=1 be a se-

quence of downbeat phases defined in the same way. Here-

after, ∗ is denoted as b or d. In practice, we use a blurry

version of Z∗ as target data for training a DNN-based clas-

sifier. More specifically, when z∗tk = 1, we assume that

z∗t,k±1 = 0.75, z∗t,k±2 = 0.50, and z∗t,k±3 = 0.25.

Let ψ∗
, {ψ∗

t }
T
t=1 be a sequence of class probability

vectors estimated by the DNN, where ψ∗
t ∈ [0, 1]K is a

K-dimensional normalized vector of frame t. The DNN is

trained in a supervised manner such that it maximizes the

posterior probability of Z∗ given by

J ∗
phase =

1

T

T
∑

t=1

K
∑

k=1

z∗tk logψ
∗
tk. (1)
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Figure 3. Network architectures.

The overall structure of the proposed method is shown

in Fig. 2 and the detailed architecture of the DNN is shown

in Fig. 3. The DNN used for phase classification in this

study is basically the same as one used in the latest study [7]

except that skip connections in the TCN used for tempo es-

timation are removed. It takes as input the log-magnitude

spectrogram of a music signal on a logarithmic frequency

axis, which is fed to the feature extraction layer referred

to as Feature embedding in Fig. 2. The extracted feature

vectors with 20 channels at each frame are fed to a stack

of eleven TCN layers, which is referred to as TCN layer ×
11, followed by Decoder that outputs a sequence of beat

or downbeat phases. For the K-class outputs, we slightly

modify the components of Decoder as in Fig. 3. One can

refer in particular to [9] for detailed descriptions of the

other DNN components.

3.2 DBN-Based Beat/Downbeat Detection

We modify the existing dynamic Bayesian network (DBN)

used in [13] for detecting beat and downbeat times from a

noisy sequence of the estimated beat and downbeat phases.

The main modification lies in the change of the observed

variable of the DBN from the presence probabilities to the

phases.

3.2.1 State Space

For each frame t, we represent the tempo Sv
t as the number

of frames per beat, Sv
t ∈ {svmin, s

v
min+1, svmin+2, . . . , svmax}

(Sv
t ∈ Z) where svmin and svmax are calculated as follows:

svmin =

[

60× fps

BPMmax

]

, svmax =

[

60× fps

BPMmin

]

, (2)

where BPMmin (BPMmax) indicates the minimum (maxi-

mum) BPM, fps indicates the number of frames per sec-

ond, and [x] denotes the closest integer to x. Let BPB be

the number of beats per measure, and Nt = BPB × Sv
t is

tempo

bar position

one beat

Figure 4. Two-dimensional representation of hidden state

space at frame t used in DBN.

the number of frames per measure. Let S
p
t ∈ {1, 2, . . . , Nt}

be the position in a measure at frame t, and S , S1:T =
(Sp

1:T ,S
v
1:T ) be a sequence of hidden states. The hidden

states at frame t is shown in Fig 4

3.2.2 State Transition Model

We use the same transition model as [13], where the tran-

sition probabilities are computed as follows:

p(St|St−1) = p(Sp
t , S

v
t |S

p
t−1, S

v
t−1)

= p(Sp
t |S

p
t−1, S

v
t−1)p(S

v
t |S

p
t , S

v
t−1). (3)

The first term of (3) represents a bar transition model, which

is defined as

p(Sp
t |S

p
t−1, S

v
t−1)

=

{

1 (Sp
t − 1 ≡ S

p
t−1 mod Nt−1);

0 (otherwise).
(4)

The second term of (3) represents a tempo transition model

and the tempo is only allowed to change at beat times.

p(Sv
t |S

p
t , S

v
t−1) is defined as follows: if S

p
t ∈ B,

p(Sv
t |S

p
t , S

v
t−1) = exp

(

−λ×

∣

∣

∣

∣

Sv
t

Sv
t−1

− 1

∣

∣

∣

∣

)

, (5)

otherwise

p(Sv
t |S

p
t , S

v
t−1) =

{

1 (Sv
t = Sv

t−1);

0 (otherwise),
(6)

where B is the set of positions that corresponds to beats

and λ ∈ Z≥0 is the parameter to determine the steepness

of the above distribution.

3.2.3 Observation Model

We formulate an observation model that stochastically gen-

erates an acoustic feature sequence X from a latent state

sequence S. We use the output of the DNN as the proba-

bility distribution of a certain phase sequence Z∗ given the

acoustic features X as follows:

p(Z∗|X) =
T
∏

t=1

K
∏

k=1

(ψ∗
tk)

z∗

tk . (7)

We represent Zb and Z
d together as Z = (Zb,Zd). To

compute p(X|S) using p(Z|X), p(X|S) is transformed as

p(X|S) =
∑

Z

p(X,Z|S) =
∑

Z

p(X|Z,S)p(Z|S). (8)
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Figure 5. Observation probabilities p(Xt|St) are repre-

sented as product of ψb
tkb

and ψd
tkd

.

Let ZS be the beat and downbeat series Z corresponding

to the given latent state S. Because ZS is uniquely deter-

mined by S, p(X|S) can be calculated as follows:

p(Z|S) = δZ,ZS
, (9)

p(X|S) =
∑

Z

p(X|Z,S)δZ,ZS
= p(X|ZS). (10)

Because p(ZS) is a uniform distribution and the term p(X)
is negligible, we get

p(X|ZS) =
p(ZS|X)p(X)

p(ZS)
∝ p(ZS|X). (11)

Finally, p(X|S) can be written using the estimated proba-

bilities as follows:

p(X|S) ∝ p(ZS|X) =
T
∏

t=1

ψb
tkb
ψd
tkd
, (12)

kb =

[

K ×
S
p
t mod Sv

t

Sv
t

]

, (13)

kd =

[

K ×
S
p
t

BPB · Sv
t

]

=

[

K ×
S
p
t

Nt

]

. (14)

3.3 Tempo Estimation

Global tempo is computed from the beat phases estimated

by the DNN using the DFT. The beat phase series is firstly

converted into a sinusoidal curve Y , {yt}
T
t=1 as follows:

yt = sin

(

2π

K
× arg max

1≤k≤K

ψb
t

)

. (15)

The DFT is applied to the series Y and we can calculate

the global tempo V as follows:

V =
60 ωmax × fps

2π
[beats/60[s]], (16)

where ωmax[rad/frame] denotes the angular velocity with

the largest absolute value of the Fourier coefficient in the

DFT result. We can thus compute the most plausible tempo

from a noisy beat phase sequence estimated by the DNN.

3.4 Joint Beat and Downbeat Estimation

We compare three architectures for joint estimation of beat

and downbeat phases (Fig. 6). In the first architecture, we

add another Decoder for downbeat estimation to the DNN

described in Section 3.1. The components of the added de-

coder are the same as those used for beat estimation. The

Input
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TCN

DEC DEC

Beat

phase

Downbeat

phase

Input

FE

TCN

DEC

Downbeat

phase

Beat

phase

FE

TCN

DEC

Input

FE

TCN

DEC

Downbeat

phase

Beat

phase

FE

TCN

DEC

Figure 6. Three network architectures for joint beat and

downbeat estimation. FE, TCN, and DEC correspond to

“Feature embedding”, “TCN layer×11”, and “Decoder” in

Fig. 2, respectively.

beat and downbeat phases are estimated in parallel. In the

second architecture, the DNN described in Section 3.1 esti-

mates beat or downbeat phases and then another DNN with

the same architecture estimates the other, where the output

of the former DNN in addition to the acoustic features are

fed to the latter DNN. The third architecture estimates the

beat and downbeat phases in the reverse order of the sec-

ond architecture.

In the second architecture, when the output of the for-

mer DNN is fed to the latter DNN, the output probability

series ψ∗ is converted into the phase series Ẑ∗ , {ẑ∗t }
T
t=1

as follows:

ẑt
∗ =

2π

K
× aT Gumbel-softmax(ψ∗

t ), (17)

where a = [1, . . . ,K]T is a K-dimensional index vector

and Gumbel-softmax(ψ∗
t ) is a differentiable function that

samples a random variable ẑ∗t that follows a discrete dis-

tribution ψ∗
t . We concatenate the phase sequence Ẑ

∗ with

the 20-dimensional vector obtained from the Feature em-

bedding of the second DNN and input the 21-dimensional

vector into the main TCN layer of the second DNN. Cal-

culating the phase series in a differentiable state enables us

to back-propagate the two DNNs at the same time.

4. EVALUATION

This section reports experiments conducted for validating

the effectiveness of the proposed phase-aware DNN train-

ing and comparing the performances of the three multi-task

learning architectures.

4.1 Experimental Conditions

To increase the amount of training data with various tem-

pos, each song was pitch-shifted by −12, −6, +6, and +12
semitones and time-stretched by min_rate, (min_rate + 1) /

2, (max_rate + 1) / 2, and max_rate times, where min_rate

and max_rate are given by

min_rate =
BPMmin

bpm
, max_rate =

BPMmax

bpm
, (18)
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Method F-measure CMLt AMLt

RWC

Baseline 0.835 0.717 0.85

Proposed 0.846 0.765 0.861

Beatles

Baseline 0.798 0.69 0.777

Proposed 0.806 0.729 0.798

SMC

Baseline 0.502 0.214 0.424

Proposed 0.428 0.312 0.39

RWC

Baseline 0.87 0.745 0.909

Proposed 0.883 0.787 0.901

Beatles

Baseline 0.847 0.763 0.866

Proposed 0.834 0.748 0.819

SMC

Baseline 0.569 0.466 0.621

Proposed 0.538 0.422 0.565

Table 1. The performances of beat estimation. The upper

half of the table is the result using peak-picking and the

lower half using the DBN as a post-processing step.

where bpm is the original tempo and BPMmax = 215 and

BPMmin = 55 were used. The log-magnitude spectrogram

was obtained by short-time Fourier transform (STFT) with

a window size of 2048 and a hop length of 441 (100 frames

per second) and then transformed into the log-frequency

scale consisting of 81 bins from 30 to 17,000 Hz.

The DNN was trained with Adam optimizer [24]. The

batch size was 1. The learning rate was initialized to 1 ×
10−3 and then halved gradually if the validation loss did

not improve for 15 epochs. The training was terminated

when the validation loss did not improve for 50 epochs or

when 200 epochs were finished. To prevent gradient ex-

plosion, gradients greater than 0.5 were clipped. The ker-

nel size of the dilated convolutions was set to 5 and the

dropout rate was set to 0.1. The phase value was quan-

tized into K = 360 classes. Other parameters are shown

in Fig. 3. In the DBN-based post-processing, the maxi-

mum and minimum BPMs were the same as those in the

data augmentation, and the λ was set to 100.

We separately conducted eight-fold cross validations on

the RWC Popular Music dataset [25] and the Beatles dataset

[23]. Although our main target is popular music, we also

used the SMC dataset [26], which contains various genres

such as classical, blues, and film music. As in [7], we used

the F-measure, CMLt, and AMLt as evaluation metrics for

beat and downbeat estimation, and Accuracy 1 and Accu-

racy 2 for tempo estimation. F-measure has a tolerance

window of ± 70 ms around the ground-truth beats. CMLt

considers a beat to be correct if its tempo and phase are

within a 17.5% tolerance of those of the ground-truth beat.

In addition to CMLt, AMLt allows a series of double/half

and triple/third tempo of the annotated beats. Accuracy 1

considers an estimated tempo correct with a tolerance of

4% of the correct tempo, and Accuracy 2 considers correct
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Figure 7. Estimation results for “Dear Prudence” by

The Beatles. From top to bottom, the ground truth, the

beat presence probability series estimated by the baseline

method, the probability of each phase at each time esti-

mated by the proposed method, and the phase series with

the highest probability at each time in the third panel.

if the estimated tempo satisfies the Accuracy 1 also with

tempo in double/half and triple/third target tempo.

First, we compared methods that estimate only beats.

The proposed method estimates beat phases, whereas the

baseline method estimates beat presence probabilities. The

decoder of the baseline method was modified so that it

consists of dropout, dense, and sigmoid layers as in [7–

9]. We tested both a naive peak-picking method and the

periodicity-aware DBN in a post-processing step that de-

tects beat times. The peak-picking algorithm first identifies

all the maxima and then selects the peaks with intervals

greater than a specified horizontal distance in the order of

increasing magnitude 2 . We used 40 frames (400ms) as the

distance value.

Next, we compared the three multitask learning archi-

tectures that jointly estimate beat and downbeat times fol-

lowed by tempo estimation. For comparison, we imple-

mented the existing method [7] by adding another decoder

for downbeat estimation that is equivalent to the decoder

for beat estimation in the baseline method, and adding the

decoder for tempo estimation described in [7].

4.2 Experimental Results

Table 1 shows the performances of the proposed and base-

line methods that estimate only beat times on the RWC,

Beatles, and SMC datasets. When the basic peak-picking

method was used for post-processing, the proposed method

outperformed the baseline method, especially in terms of

the CMLt by a large margin. This indicates that the pro-

posed method better captures the periodic nature of met-

rical structure, resulting in the better regularity of the es-

timated beat times. We found that the proposed method

achieved a better CMLt for not only popular music (RWC

2 We use the peak-picking function specified here: https://docs.scipy.
org/doc/scipy/reference/generated/scipy.signal.find_peaks.html
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Beat Downbeat Tempo

F-measure CMLt AMLt F-measure CMLt AMLt Accuracy 1 Accuracy 2

RWC

beat-and-downbeat 0.907 0.817 0.907 0.878 0.822 0.887 0.861 1.00

beat-to-downbeat 0.884 0.783 0.902 0.854 0.802 0.880 0.850 0.990

downbeat-to-beat 0.920 0.845 0.914 0.884 0.843 0.890 0.900 0.990

Böck et al. [7] 0.914 0.83 0.952 0.902 0.850 0.941 0.853 0.980

Beatles

beat-and-downbeat 0.823 0.722 0.786 0.753 0.683 0.748 0.872 0.955

beat-to-downbeat 0.832 0.738 0.819 0.774 0.703 0.778 0.861 0.961

downbeat-to-beat 0.825 0.740 0.800 0.767 0.708 0.767 0.883 0.966

Böck et al. [7] 0.862 0.779 0.895 0.825 0.767 0.871 0.860 0.967

Table 2. The performances of joint beat and downbeat estimation. “beat-and-downbeat” denotes the architecture that

simultaneously estimates beat and downbeat, “beat-to-downbeat” denotes the architecture that first estimates beats and

subsequently estimates downbeats, and “downbeat-to-beat” denotes the reverse version of the “beat-to-downebat”.

and Beatles dataset) but also various music genres (SMC

dataset). When the DBN was used for post-processing, in

contrast, the baseline method worked best in almost all

cases except for the F-measure and CMLt on the RWC

dataset. Further refinement of the DBN suitable for a se-

quence of phases should be investigated in the future.

Fig. 7 shows an example of the estimation results ob-

tained by the baseline and proposed methods. While the

baseline method showed high beat probabilities even at

non-beat times, the proposed method estimated high prob-

abilities at the target phases. Thus, our method has the po-

tential to continuously estimate the phase with a constant

angular velocity, This is in line with the high accuracy of

CMLt in peak-picking results. However, as can be seen

from the third panel in Fig. 7, the phase probabilities in the

proposed method tend to be blurred in difficult segments

to detect the periodicity. The baseline method, in such seg-

ments, showed high probabilities in aperiodic locations in-

stead of blurring the beat probabilities. This difference in

the output behavior in the difficult section is considered to

have an effect on the DBN.

Table 2 shows the comparison of the methods used for

simultaneously estimating beat, downbeat, and tempo. In

the three architectures of the proposed method, “downbeat-

to-beat” worked best for the RWC dataset, whereas “beat-

to-downbeat” worked well for the Beatles dataset. Because

downbeat estimation can be performed accurately for the

RWC dataset compared with the Beatles dataset, the beat

detection of “downbeat-to-beat” is considered to have the

best accuracy by leveraging the downbeat estimation. By

contrast, in the Beatles dataset, the estimated beat phases

are considered to help improve the downbeat estimation

because “beat-to-downbeat” had higher accuracy. In both

datasets, “beat-and-downbeat” did not show the highest ac-

curacy in the beat and downbeat evaluation. We consider

that this is because “beat-to-downbeat” or “downbeat-to-

beat” can use additional information for training and esti-

mation. For example, in the case of “beat-to-downbeat”,

the latter DNN which estimates downbeats can utilize the

result of beat estimation, which is expected to improve

the downbeat estimation, and the parameters of the for-

mer DNN are optimized to output the better downbeat es-

timation, which is expected to improve the beat estimation

as well. In the results of tempo estimation, “downbeat-

to-beat” showed the best accuracy in Accuracy 1. This is

considered to have a relationship with the better accuracy

of CMLt in our method when applying the peak-picking

method since our tempo estimation method relies on the

estimated phase series.

5. CONCLUSION

We proposed a phase-aware beat, downbeat, and tempo es-

timation method. More specifically, we trained a DNN

to estimate a phase at each frame instead of a beat pres-

ence probability and calculate beat and downbeat times and

tempo on the basis of the estimated phase. The experimen-

tal results showed that the proposed method could estimate

more periodic beats than the conventional method that de-

pends on a post-processing step.

For future work, we plan to utilize tempo to estimate

more periodic beat times. Considering that beat and down-

beat times are closely related to the other components used

in MIR (e.g. drum scores), it would be beneficial to train

an end-to-end model that directly estimates beat times and

other components from music signals in the framework of

multi-task learning.
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