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ABSTRACT

This paper describes a practical dual-process speech enhance-
ment system that adapts environment-sensitive frame-online
beamforming (front-end) with help from environment-free
block-online source separation (back-end). To use minimum
variance distortionless response (MVDR) beamforming, one
may train a deep neural network (DNN) that estimates time-
frequency masks used for computing the covariance matrices
of sources (speech and noise). Backpropagation-based run-
time adaptation of the DNN was proposed for dealing with the
mismatched training-test conditions. Instead, one may try to
directly estimate the source covariance matrices with a state-of-
the-art blind source separation method called fast multichannel
non-negative matrix factorization (FastMNMF). In practice,
however, neither the DNN nor the FastMNMF can be updated
in a frame-online manner due to its computationally-expensive
iterative nature. Our DNN-free system leverages the posteri-
ors of the latest source spectrograms given by block-online
FastMNMF to derive the current source covariance matrices
for frame-online beamforming. The evaluation shows that our
frame-online system can quickly respond to scene changes
caused by interfering speaker movements and outperformed
an existing block-online system with DNN-based beamform-
ing by 5.0 points in terms of the word error rate.

Index Terms— speech enhancement, beamforming, blind
source separation, automatic speech recognition

1. INTRODUCTION

In real environments, speech enhancement methods must be
adaptive to variations in sound scenes caused by environmental
changes or movements of the sound sources [1–3]. While it is
important to successfully extract the speech of interest, having
a low computational cost can be critical for downstream tasks
that demand low-latency outputs, such as automatic speech
recognition (ASR) for augmented reality applications aiming
at natural human-machine interaction.

This work was supported by JSPS KAKENHI Nos. 19H04137, 20K19833,
and 20K21813.
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Fig. 1. The proposed low-latency speech enhancement system
consisting of a frame-online front end (beamforming) informed
by a block-online back end (FastMNMF).

Beamforming is a computationally-efficient multichannel
source separation technique that can extract a single-channel
signal coming from a target direction when an accurate steering
vector or well-estimated source covariance matrices are given
[3–6]. Deep neural networks (DNNs) have been popular for
estimating these source covariance matrices [6–11], but these
DNNs may have limited performance when the actual test en-
vironment is not covered by the training data. In contrast, mul-
tichannel blind source separation (BSS) methods, such as mul-
tichannel non-negative matrix factorization (MNMF) [12] and
FastMNMF [13, 14], are expected to perform well in any envi-
ronment by optimizing the parameters of the assumed source
probability distributions. However, these methods require suf-
ficient data and have a relatively high computational cost.

Semi-blind or blind source separation method has been
combined with beamforming. Beamformers have been derived
in a block-online processing manner using the target source
mask estimated as the posterior of a complex Gaussian mixture
model (cGMM) [15] or a complex angular central Gaussian
mixture model (cACGMM) [16], or the source covariance ma-
trices obtained by MNMF [17]. These systems run the estima-
tion of mask or covariance matrices and the beamforming se-
quentially on the same block of data. Thus, the system latency
is limited by the block size required by cGMM, cACGMM, or
MNMF to provide reliable estimates. FastMNMF, which has
been shown to outperform MNMF, has also been used as the
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back end of a dual-process adaptive online speech enhance-
ment system [11] whose front end runs minimum variance dis-
tortionless response (MVDR) beamforming [5] with a DNN
mask estimator [6]. The DNN mask estimator is periodically
updated using the separated speech signals obtained by Fast-
MNMF, which carry out informed source separation given the
target directions, to adapt to the test environment.

This paper proposes a dual-process speech enhancement
system whose front end performs a responsive adaptive on-
line MVDR beamforming by exploiting the parameters of the
source posterior distributions, i.e., the Wiener filters and the
covariance matrices, estimated by the back-end FastMNMF,
as shown in Figure 1. Using those Wiener filters and source
posterior covariance matrices, we compute frame-wise second-
order raw moments given the current observed mixture and
accumulate them using exponential moving averages (EMAs)
to obtain block-wise source covariance matrices for the beam-
former. Consequently, the estimation of the source covariance
matrix relies on FastMNMF, instead of a DNN-based mask
estimator [11]. Directly using the average source covariance
matrices estimated by FastMNMF in a way similar to [17] is
also possible. However, when the back end processes a signifi-
cantly larger data block than the front end, the front end pro-
cesses many blocks using the same beamformer while waiting
for the back end to provide new source covariance matrices.
Our proposed system is thus more preferable because it can
promptly respond to the sound scene changes.

The evaluation used multiple sequences of mixtures, in
which the interfering speaker locations are different in separate
mixtures. Our system outperformed DNN-based beamforming
[11] in terms of word error rate (WER) by 5.0 points using
frame-online processing with a total latency of 22 ms.

2. PROPOSED SYSTEM

Let xft∈CM be the short-time Fourier transform (STFT) co-
efficients at frequency f ∈ [1, F ] and time frame t∈ [1, T ] of
the observed multichannel mixture signal captured by M mi-
crophones and xnft∈CM be the STFT coefficients of the so-
called multichannel image of source n ∈ [1, N ], where F is
the number of frequency bins, T is the total number of time
frames, and N is the number of sources. The source images are
assumed to sum to the observed mixture as xft=

∑N
n=1 xnft.

Given X≜ {xft|∀f,∀t}, BSS generally estimates ∀n,Xn ≜
{xnft|∀f,∀t}. In this paper, our dual-process adaptive online
speech enhancement system obtains the single-channel signal
estimate {sn′ft|∀f,∀t} of target source n′ for ASR purpose.

The dual-process speech enhancement system executes a
back end (Sect. 2.1) and a front end (Sect. 2.2) in parallel in a
block-online processing manner, where each block is a subset
of X consisting of a sequence of multiple time frames, as in
[11]. At a time, the back end processes XBSS

i ⊂X composed
of TBSS frames with i is the block index, while the front end
processes XBF

j ⊂ X composed of TBF frames with j is the
block index. TBSS can be large enough to provide reliable

statistics required for good BSS performance, while TBF can
be small when low-latency outputs are expected.

The proposed system is similar to the system in [11]. Both
systems basically use the same back-end FastMNMF. How-
ever, the front ends use different ways to obtain the source co-
variance matrices required to derive MVDR beamformer.
2.1. Back End
As in [11], the back end operates given a block of data XBSS

i

and one or more target directions. Offline iterative dereverber-
ation [18] is first performed on XBSS

i to obtain a set of less re-
verberant mixtures X̂BSS

i , on which FastMNMF [14] is then
applied after initializing the inverse of the so-called diago-
nalization matrix given the target directions. Although Fast-
MNMF typically aims for the source image estimates, we are
more interested in the estimated parameters of the posterior
distribution x̂nft|x̂ft.

The local Gaussian model assumes that each source image
x̂nft follows an M -variate complex-valued circularly-sym-
metric Gaussian distribution, whose covariance matrix is de-
composed into power spectral density (PSD) λnft and spatial
covariance matrix (SCM) Gnf , as x̂nft ∼NC (0, λnftGnf )
[19]. To deal with the difficult optimization of this vanilla
model, the state-of-the-art BSS method called FastMNMF [14]
uses a nonnegative matrix factorization (NMF)-based spectral
model and a jointly-diagonalizable spatial model. The PSD is
given by λnft≜

∑C
c=1 uncfvnct∈R+, where uncf ∈R+ and

vnct∈R+ with c∈ [1, C] and C is the number of NMF compo-
nents. The SCM is jointly-diagonalizable by a time-invariant
diagonalization matrix shared among all sources Qf ∈CM×M

as Gnf ≜Q−1
f Diag(g̃n)Q

−H
f , where Diag(g̃n) is a diagonal

matrix whose diagonal vector is g̃n≜[g̃1n, . . . , g̃Mn]
T∈RM

+ .
Thus, the probability distributions of the n-th less reverberant
source image and less reverberant mixture can be expressed as

x̂nft∼NM
C

(
0, λnftQ

−1
f Diag(g̃n)Q

−H
f

)
, (1)

x̂ft∼NM
C

(
0,
∑N

n=1
λnftQ

−1
f Diag(g̃n)Q

−H
f

)
. (2)

Consequently, the posterior distribution is given by

x̂nft | x̂ft ∼ NM
C
(
Wnftx̂ft , Σnft

)
, (3)

Wnft = Q−1
f Diag

(
λnftg̃n∑N

n′=1 λn′ftg̃n′

)
Qf , (4)

Σnft = (I−Wnft)Q
−1
f Diag (λnftg̃n)Qf , (5)

where I is the identity matrix. After the FastMNMF parameter
optimization for X̂BSS

i is finished, we compute the exponential
moving averages (EMAs), W̃nfi and Σ̃nfi, with αBSS=1 for
i=1, to represent the Wiener filter and the posterior covariance
matrix, respectively, of source n in block i as follows:

W̃nfi=
αBSS

TBSS

∑T BSS

t′=1
Wnft′ + (1− αBSS)W̃nf(i−1), (6)

Σ̃nfi=
αBSS

TBSS

∑T BSS

t′=1
Σnft′ + (1− αBSS)Σ̃nf(i−1). (7)
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2.2. Front End

Given a block of data XBF
j , the front end performs an online

dereverberation to obtain a less reverberant mixture x̂ft that is
then used by a beamforming to compute the target signal esti-
mate snft. The beamforming uses W̃nfi′ and Σ̃nfi′ , where i′

is the index of the latest block XBSS
i′ processed by the back end.

2.2.1. Online Dereverberation

We remove late reverberation from the mixture xft using an
online variant of WPE [18,20]: x̂ft=xft−HH

ftx̃f(t−∆)∈CM ,
where x̃f(t−∆)∈CMK stacks {xft′ |t′∈ [t−∆−K+1, t−∆]}
and Hft=R−1

ft Pft∈CMK×M is the WPE filter with Rft∈
CMK×MK , Pft∈CMK×M , ∆ is the delay, and K is the num-
ber of filter taps. Although our front end works in a block-
online processing manner, we opt for an online variant that
allows us to avoid frequent matrix inversion R−1

ft when TBF is
small. We first initialize R−1

f0 ← I and Hf0←0, where 0 is
the zero matrix with appropriate dimensions. The dereverbera-
tion is then performed after updating R−1

ft and Hft as follows:

ϕft=(M∆)−1
∑M

m=1

∑t

t′=(t−∆+1)

∣∣{xft′}m
∣∣2 , (8)

Kft=
αWPER−1

f(t−1)x̃f(t−∆)

(1−αWPE)ϕft+αWPEx̃H
f(t−∆)R

−1
f(t−1)x̃f(t−∆)

, (9)

R−1
ft =

(
1− αWPE)−1

(
I−Kftx̃

H
f(t−∆)

)
R−1

f(t−1), (10)

Hft=Hf(t−1) +Kft

(
xft −HH

f(t−1)x̃f(t−∆)

)H
, (11)

x̂ft=xft −HH
ftx̃f(t−∆). (12)

Our calculations for Kft and R−1
ft are slightly different

from those presented in [18, 21, 22] because we formulate
EMAs: Rft=αWPEϕ−1

ft ỹf(t−∆)ỹ
H
f(t−∆)+(1−αWPE)Rf(t−1)

and Pft = αWPEϕ−1
ft ỹf(t−∆)y

H
ft+(1−αWPE)Pf(t−1). With

these formulations, the EMA parameters in this paper, i.e.,
αBSS, αWPE, and αBF, provide the same interpretation about
the weights of a new data and the accumulated data. In terms
of our αWPE, the EMA parameter in [22] is (1−αWPE).

2.2.2. Online Beamforming

Assuming that x̂nft | x̂ft∼NM
C
(
W̃nfi′ x̂ft, Σ̃nfi′

)
, we first

compute the time-varying second-order raw moment as the
covariance matrix Γnft of source n and the corresponding in-
terference covariance matrix Υnft. EMAs Γ̃nfj , Υ̃nfj rep-
resenting the source covariance matrices in block j are calcu-
lated with αBF=1 for j=1. A beamformer wMV

nfj [5] is then
obtained given a vector um′ , whose m′-th entry is 1 and 0 else-
where with m′ is the reference microphone index, as follows:

Γnft = W̃nfi′ x̂ftx̂
H
ftW̃

H
nfi′ + Σ̃nfi′ , (13)

Υnft = x̂ftx̂
H
ft − Γnft, (14)

Γ̃nfj =
αBF

TBF

∑T BF

t=1
Γnft +

(
1− αBF) Γ̃nf(j−1), (15)

Υ̃nfj =
αBF

TBF

∑T BF

t=1
Υnft +

(
1− αBF) Υ̃nf(j−1), (16)

wMV
nfj =

(
tr
(
Υ̃−1

nfjΓ̃nfj

))−1

Υ̃−1
nfjΓ̃nfjum′ . (17)

Finally, we use the beamformer for all time frames in block j,
i.e., wMV

nft←wMV
nfj , to obtain a single-channel enhanced signal:

snft =
(
wMV

nft

)
Hx̂ft. (18)

3. EVALUATION

This section presents the evaluation of our proposed method
on data recorded using a Microsoft HoloLens 2 (HL2).

3.1. Experimental Settings

The evaluation was performed on the test subset of the dataset
used in [11]. This subset contained eight simulated noisy mix-
ture signals, each of which consists of multiple utterances,
amounted to 18 min in total. Each mixture signal was com-
posed of two reverberant speech signals and one diffuse noise
signal (N=3), which were recorded separately in a room with
an RT60 of about 800 ms using the 5 microphones of an HL2
(M = 5). The dry speech signals were taken from the Lib-
rispeech dataset [23], and the noise signals were taken from
the CHiME-3 dataset [24]. The noise source was located 3 m
away from the HL2 in the direction of 135◦, where 0◦ was in
front of the HL2, behind multiple portable room dividers to
build up reflections, which characterize a diffuse noise. The
target speaker and the interfering speaker were located 1.5 m
away from the HL2. The target speaker was in the direction
of 0◦, while the interfering speaker varied for each utterance
between {45◦, 90◦, 180◦, 225◦, 270◦, 315◦}. Each noisy mix-
ture signal was fed in turn to a speech enhancement method, so
the method needs to handle the interfering speaker movements.

All audio signals were sampled at 16 kHz. The STFT coef-
ficients were extracted using a 1024-point Hann window (F =
513) with 75% overlap. To factor out possible instability of the
first few EMA computations due to improper initialization, we
concatenated the last 1024 frames (≈ 16 s) of each noisy mix-
ture to its beginning so that the compared methods processed
a few blocks before the performance measurement started.

The block size of the back end was set to TBSS = 256
frames with 75% overlap. Thus, the back end provided new
W̃nfi′ and Σ̃nfi′ every 64 frames (≈ 1 s). The back-end it-
erative offline WPE was performed for 3 iterations using the
tap length of 5 and the delay of 3. The number of NMF com-
ponents was C=8 and the number of FastMNMF parameter
updates was 50, including 40 warming-up iterations with the
frequency-invariant source model. The front-end online WPE
was performed using the tap length of 5 and the delay of 3. We
loosely performed a grid search in preliminary experiments by
considering αWPE, αBF, αBSS ∈ {0.500, 0.200, 0.100, 0.050,
0.020, 0.010, 0.005}. The experiments presented in this paper
used αWPE = 0.005 and αBSS = 0.100. The experimental re-
sults illustrate the proposed system’s top performance on the
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Table 1. Average WERs [%] and computation times [ms] of
the baseline front ends. The total latency [ms] is the sum of
the block shift size and the average computation time for each
block. Lower WER score and computation time are better.

Block
Method Size

[ms]
Shift
[ms]

Comp.
Time
[ms]

Total
Latency

[ms]

WER
[%]

Clean (ground truth) — — — — 6.1
Noisy (observation) — — — — 92.1

Online WPE 16 16 3 19 87.8
Online WPE + DS 16 16 4 20 68.4
Online WPE + MPDR 16 16 6 22 47.1
Online WPE + MPDR 64 64 16 80 46.0
Online WPE + MPDR 256 256 54 310 47.2

WPE + MVDR with DNN-based mask estimation [11]
(before adaptation) 3000 500 250 750 35.6
(after adaptation) 3000 500 250 750 20.4

test set because the hyperparameter tuning for αWPE, αBF, and
αBSS was performed on the same set.

The performance was evaluated in terms of the word er-
ror rate (WER) [%] and the computation time [ms]. The ASR
system was based on the transformer-based acoustic and lan-
guage models of the SpeechBrain toolkit [25]. We additionally
perform the standard statistical test called the Matched Pair
Sentence Segment Word Error (MAPSSWE) test [26] to deter-
mine whether two WERs obtained by two different systems
are different [2]. It is a two-tailed test whose null hypothesis
is that there is no performance difference between the two sys-
tems. The computation time was measured on Intel Xeon E5-
2698 v4 (2.20 GHz) with NVIDIA Tesla V100 SXM2 (16GB).

3.2. Experimental Results and Discussion

Table 1 shows the baseline performances. The WERs for
‘clean’, ‘observed noisy’, and ‘online WPE’ were computed
using the top center microphone of HL2. The online WPE
(Sect. 2.2.1) was also used with the delay-and-sum (DS)
beamforming or the minimum power distortionless response
(MPDR) beamforming. For ‘online WPE + DS’ and ‘online
WPE + MPDR’, we selected one vector from the set of pre-
recorded steering vectors given the target directions. For ‘on-
line WPE + MPDR’, we used an EMA of mixture covariance
matrices computed similar to Eq. (15). Thus, its performance
affected by the block size and shift size. The shown WERs for
16 ms

(
TBF=1

)
, 64 ms

(
TBF=4

)
, and 256 ms

(
TBF=16

)
were achieved using the optimal αBF, i.e., 0.020, 0.100, 0.200,
respectively. The performances of ‘WPE + MVDR with DNN-
based mask estimation’ were the best ones shown in [11].

Tables 2 and 3 show the computational times and the aver-
age word error rates (WERs), respectively, of the proposed sys-
tem for different TBF (with no overlap) and different αBF. The
WERs marked with ⋆⋆ are not statistically different (the null hy-

Table 2. Computation times and total latencies [ms] of the
proposed front end for different TBF [frames] (with no overlap).
Lower computation time is better.
Block size TBF [frames] 1 2 4 8 16 32

Block shift [ms] 16 32 64 128 256 512
Computation time [ms] 6 10 17 30 57 111
Total latency [ms] 22 42 81 158 313 623

Table 3. Average WERs [%] of the proposed system for differ-
ent TBF [frames] and αBF. Lower WER score is better. For vi-
sualization purpose, the shading of each cell reflects the WER
score. The best performance for each TBF is in bold type. The
top performances that are not statistically different from the
overall best performance indicated by ⋆ are marked with ⋆⋆ .

αBF

←
T

B
F

0.
50
0

0.
20
0

0.
10
0

0.
05
0

0.
02
0

0.
01
0

0.
00
5

32 15.8⋆⋆ 15.2⋆⋆ 16.8 21.8 27.9 38.1 50.6

16 20.1 15.0⋆⋆ 15.7⋆⋆ 17.8 23.7 28.1 36.8

8 39.0 18.3 14.9⋆⋆ 15.7⋆⋆ 18.7 23.1 27.4

4 93.8 30.9 18.7 14.9⋆⋆ 15.8⋆⋆ 19.7 23.0

2 95.4 75.7 30.9 18.8 14.8⋆ 16.1 20.1

1 98.3 97.2 68.3 30.7 16.8 15.4⋆⋆ 16.6

pothesis is accepted at the 95% confidence level) from the best
WER marked with ⋆, i.e., 14.8% for

(
TBF=2, αBF=0.020

)
.

It is worth noting that for
(
TBF=1, αBF=0.010

)
, the WER

(i.e., 15.4%) is statistically the same as the best performance.
It demonstrates that our proposed system can also perform
very well even with the low-latency frame-online processing.

The optimal αBF for each TBF suggests that when a small
block size is used, the front end should rely more on the
accumulated statistics and put less importance on the newly
acquired data (cf. Eqs. (15) and (16)). Inappropriate αBF may
have detrimental effects, e.g., αBF=0.500 for TBF∈{1, 2, 4}.
Using optimal αBF, our proposed system outperformed the
baseline performances, including that of mask-based MVDR
with DNN [11]. It suggests that our estimation of source
covariance matrices for deriving the MVDR beamformer was
more adaptive in handling the sound scene changes due to the
interfering speaker movements. Accumulating the statistics
using EMA seems crucial and may also benefit MVDR with
DNN-based mask estimation. We leave this for future work.

4. CONCLUSION

This paper proposes a practical approach to the enhancement
of adaptive speech with low latency and high performance.
The system operates an online MVDR beamforming on the
front end that adopts the posterior distribution obtained by
the back-end BSS based on FastMNMF. Future works include
considering scenarios with continuously moving sources and
automating hyperparameter tuning for αWPE, αBF, and αBSS.
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