
 Eurospeech 2001 - Scandinavia

Julius — an Open Source Real-Time Large Vocabulary Recognition Engine

Akinobu Lee�, Tatsuya Kawahara��, Kiyohiro Shikano�

� Graduate School of Information Science, Nara Institute of Science and Technology, Japan
�� School of Informatics, Kyoto University, Japan

ri@is.aist-nara.ac.jp

Abstract
Julius is a high-performance, two-pass LVCSR decoder
for researchers and developers. Based on word 3-gram
and context-dependent HMM, it can perform almost real-
time decoding on most current PCs in 20k word dicta-
tion task. Major search techniques are fully incorporated
such as tree lexicon, N-gram factoring, cross-word con-
text dependency handling, enveloped beam search, Gaus-
sian pruning, Gaussian selection, etc. Besides search
efficiency, it is also modularized carefully to be inde-
pendent from model structures, and various HMM types
are supported such as shared-state triphones and tied-
mixture models, with any number of mixtures, states,
or phones. Standard formats are adopted to cope with
other free modeling toolkit. The main platform is Linux
and other Unix workstations, and partially works on
Windows. Julius is distributed with open license to-
gether with source codes, and has been used by many
researchers and developers in Japan.

1. Introduction

In recent study of large vocabulary continuous speech
recognition, we have recognized the necessity of a com-
mon platform. By collecting database and sharing tools,
the individual components such as language models and
acoustic models can be fairly evaluated through actual
comparison of recognition result. It benefits both re-
search of various component technologies of and devel-
opment of recognition systems.

The essential factors of a decoder to serve as a com-
mon platform is performance, modularity and availabil-
ity. Besides accuracy and speed, it has to deal with many
model types of any mixtures, states or phones. Also the
interface between engine and models needs to be sim-
ple and open so that anyone can build recognition sys-
tem using their own models. In order to modify or im-
prove the engine for a specific purpose, the engine needs
to be open to public. Although there are many recogni-
tion systems recently available for research purpose and
also as commercial products, not all engines satisfy these
requirement.

We developed a two-pass, real-time, open-source
large vocabulary continuous speech recognition engine

Figure 1: Screen shot of Japanese dictation system using
Julius.

named “Julius” for researchers and developers. It in-
corporates many search techniques to provide high level
search performance, and can deal with various types
models to be used for their cross evaluation. Standard
formats that other popular modeling tools[1][2] use is
adopted. On a 20k-word dictation task with word 3-gram
and triphone HMM, it realizes almost real-time process-
ing on most current PCs.

Julius has been developed and maintained as part of
free software toolkit for Japanese LVCSR[4] from 1997
on volunteer basis. The overall works are still continu-
ing to the Continuous Speech Recognition Consortium,
Japan[3]. This software is available for free with source
codes. A screen shot of Japanese dictation system is
shown in Figure 1.

In this paper, we describe its search algorithm, mod-
ule interface, implementation and performance. It can be
downloaded from the URL shown in the last section.



 Eurospeech 2001 - Scandinavia

frame
synchronous
beam search

(1-best)

stack
decoding

search
(N-best)

input
speech

word
sequence

word
trellis
index

word
2-gram

word
3-gramlexicon

Acoustic
Model

Language
Model

(cross word approx.) (no approx.)

context-dependent HMM

Julius

Figure 2: Overview of Julius.

2. Search Algorithm

Julius performs two-pass (forward-backward) search us-
ing word 2-gram and 3-gram on the respective passes[5].
The overview is illustrated in Figure 2. Many major
search techniques are incorporated. The details are de-
scribed below.

2.1. First Pass

On the first pass, a tree-structured lexicon assigned with
language model probabilities is applied with the frame-
synchronous beam search algorithm. It assigns pre-
computed 1-gram factoring values to the intermediate
nodes, and applies 2-gram probabilities at the word-end
nodes. Cross-word context dependency is handled with
approximation which applies the best model for the best
history. As the 1-gram factoring values are independent
of the preceding words, it can be computed statically in
a single tree lexicon and thus needs much less work area.
Although the values are theoretically not optimal to the
true 2-gram probability, these errors can be recovered on
the second pass.

We assume one-best approximation rather than word-
pair approximation. The degradation by the rough ap-
proximation in the first pass is recovered by the tree-
trellis search in the second pass. The word trellis index,
a set of survived word-end nodes, their scores and their
corresponding starting frames per frame, is adopted to
efficiently look up predicted word candidates and their
scores on the later pass. It allows recovery of word
boundary and scoring errors of the preliminary pass on
the later pass, thus enables fast approximate search with
little loss of accuracy.

2.2. Second Pass

In the second pass, 3-gram language model and pre-
cise cross-word context dependency is applied for re-
scoring. Search is performed in reverse direction, and
precise sentence-dependent N-best score is calculated by
connecting backward trellis in the result of the first pass.
The speech input is again scanned for re-scoring of cross-
word context dependency and connecting the backward
trellis. There is an option that applies cross-word con-
text dependent model to word-end phones without delay
for accurate decoding. We enhanced the stack-decoding
search by setting a maximum number of hypotheses of
every sentence length (envelope), since the simple best-
first search sometimes fails to get any recognition results.
The search is not A*-admissible because the second pass
may give better scores than the first pass. It means that
the first output candidate may not be the best one. Thus,
we compute several candidates by continuing the search
and sort them for the final output.

2.3. Gaussian Pruning and Gaussian Mixture Selec-
tion on Acoustic Computation

For efficient decoding with tied-mixture model that has a
large mixture pdfs, Gaussian pruning is implemented[6].
It prunes Gaussian distance (= log likelihood) compu-
tation halfway on the full vector dimension if it is not
promising. Using the already computed k-best values as a
threshold guarantees us to find the optimal ones but does
not eliminate computation so much [safe pruning]. We
implement more aggressive pruning methods by setting
up a beam width in the intermediate dimensions [beam
pruning]. We perform safe pruning in the standard de-
coding and beam pruning in the efficient decoding.

To further reduce the acoustic computation cost on
triphone model, a kind of Gaussian selection scheme
called Gaussian mixture selection is introduced[7]. Addi-
tional context-independent HMM with smaller mixtures
are used for pre-selection of triphone states. The state
likelihoods of the context-independent models are com-
puted first at each frame, and then only the triphone
states whose corresponding monophone states are ranked
within the k-best are computed. The unselected states are
given the probability of monophone itself. Compared to
the normal Gaussian selection that definitely select Gaus-
sian clusters by VQ codebook, the unselected states are
reliably backed-off by assigning actual likelihood instead
of some constant value, and realize stable recognition
with even more tight condition.

2.4. Transparent Word Handling

Toward recognition of spontaneous speech, transparent
word handling is also implemented for fillers. The N-
gram probabilities of transparent words are given as same
as other words, but they will be skipped from the word



 Eurospeech 2001 - Scandinavia

context to prevent them from affecting occurrence of
neighbor words.

2.5. Alternative algorithms

Besides these algorithms described above, conventional
algorithms are also implemented for comparison. The
default algorithms described above such as 1-gram factor-
ing, one-best approximation and word trellis index can be
replaced to conventional 2-gram factoring, word-pair ap-
proximation and word graph interface respectively. They
are selectable on compile time and any combination is
allowed. Users can choose suitable algorithms for their
evaluation and development.

3. Module Interface

In order to act as a module of various speech recognition
systems, a recognition engine needs to have simple and
trivial interface to other modules. We adopt standard and
common format as module interface to keeps generality
and modularity to various models. The interfaces, speech
input and output of Julius is described in the following.

3.1. Acoustic Model

Monophone and triphone HMM with any number of mix-
tures, states, phones are supported. It can also handle
tied-mixture models and phonetic tied-mixture model[6].
The model types are automatically identified. The HMM
definition file should be in HTK format. When tied-
mixture model is given (by hmmdefs using directive
<TMix>), Gaussian pruning is activated for each mix-
ture pdfs. Not all formats in HTK hmmdefs are sup-
ported: multi input stream, discrete HMM, covariance
matrix other than diagonal and duration parameter are not
supported.

3.2. Lexicon

The format of the recognition dictionary is similar to the
HTK dictionary format. It is a list of words with their
output strings and pronunciations. Each pronunciation
is expressed as a sequence of sub-word unit name in the
acoustic model. Actually any sub-word unit like syllables
can be used. Multiple pronunciations of a word should
be written as separate words, each has possible pronunci-
ation pattern. With a triphone model, each pronunciation
unit is converted to context-aware form (ex. “a-k+i”) on
startup. To map possible (logical) triphones to the defined
(physical) ones in the hmmdefs, acoustic model should be
accompanied with HMM list that specifies the correspon-
dences.

The default maximum vocabulary size is set to 65535
words by default for memory efficiency, but larger size
can be allowed if configured so.

3.3. Language Model

Two language model is needed: word 2-gram for the first
pass and word 3-gram in reverse direction for the second
pass. ARPA-standard format can be directly read. To
speed up the startup procedure of recognition system, an
original binary format is supported1.

3.4. Input / Output

Speech input by waveform file (16bit PCM) or pattern
vector file (HTK format) is supported. Live microphone
input is also supported on Linux, FreeBSD, Sun and SGI
workstations. Input can also be sent via TCP/IP network
using DAT-Link/netaudio protocol. These input speech
stream can be segmented on pause by watching zero-
cross and power, and each segment is recognized sequen-
tially in turn.

Decoding of the first pass is done in parallel with the
speech input. It starts processing as soon as a input seg-
ment starts, and when a long pause is detected, it finishes
the first pass and continues to the second pass. As the sec-
ond pass finishes in very short time, the delay of recogni-
tion result output is sufficiently small.

The current speech analysis function of Julius can
extract only one coefficients for our acoustic models2.
CMN (cepstral mean normalization) is activated automat-
ically if acoustic model requires it. In case of file input,
cepstral mean is computed first for the file or segment.
For live input, average values of last 5 seconds are used.

Output is a recognition result in word sequence. N-
best results can be output. Phoneme sequence, log likeli-
hood scores and several search statistics can also be gen-
erated. Partial results can be output successively while
processing the first pass, though the final result is unde-
termined till the end of the second pass.

3.5. Search Parameters

Various search parameters can be determined in both
compile time and run time. The parameters of language
model weight and insertion penalty as well as the beam
width can be adjusted for the respective passes. Two de-
fault decoding options are also set up: Standard decod-
ing strictly handles context dependency of acoustic mod-
els for accurate recognition. Efficient decoding uses a
smaller beam width by default and terminated the search
when the first candidate is obtained.

4. Implementation and Distribution

Main platform is Linux, but it also works on other Unix
workstations: FreeBSD, Solaris2, IRIX6.3 and Digital
Unix. Live microphone input is supported on most OS. It

1A conversion tool “mkbingram” is included in the distribution
package.

226 dimension MFCC E D Z coefficients only.



 Eurospeech 2001 - Scandinavia

Table 1: Performance of 20k Japanese dictation system

system efficient accurate

acoustic model PTM triphone
129x64 2000x16

Julius conf. fast standard

CPU time 1.3 xRT 5.0 xRT
Word acc. (male) 89.0 94.4

Word acc. (female) 91.8 95.6
Word acc. (GD avg.) 90.4 95.0

Word acc. (GID) 89.7 93.6

Julius-3.2, CPU: Pentium III 850MHz
(without Gaussian Mixture selection)

can also run on Microsoft Windows. We are now work-
ing on the Windows version to be fully functioned, but
currently the features are limited.

The whole source code is distributed freely. Preparing
acoustic model and language model, one can construct a
speech recognition system for their tasks. Users can mod-
ify the source or part of them for their applications with-
out explicit permission of the authors, both in research
purpose, and even in commercial purpose.

Julius has been developed since 1996. The recent
revision is 3.2 and development is still continuing on vol-
unteer basis. The source codes are written in C language,
and its total amount is about 22,000 lines and 604 Kbytes.
Although it has been developed and tested on Japanese
environment, it should work on other language with little
modification.

5. Evaluation on Japanese Dictation task

Performance of the total Japanese dictation system with
Julius and typical models provided by the IPA Japanese
dictation toolkit[4] is summarized in Table 1 for 20k sys-
tem. Two typical configuration are listed: efficiency-
oriented and accuracy-oriented. Note that the Gaussian
mixture selection and transparent word handling is not
included in this experiment.

The accurate version with triphone model and stan-
dard decoding achieves a word accuracy of 95%. The
efficient version using the PTM model keeps the accu-
racy above 90% and runs almost in real-time at a stan-
dard PC. The required memory is about 100Mbytes for
the efficient version and about 200Mbytes for the accu-
rate version. This difference comes mainly from acoustic
probability cache, as all state probabilities of all frame is
cached in the first pass to be accessed on the second pass.

The total system performance integrating Gaussian
mixture selection is shown in Table 2. Real-time factor
of 1.06 is achieved even with standard setting, and the
word accuracy reaches 92.1%.

Table 2: Total Performance
system efficient + GMS

acoustic model PTM 129x64
Julius conf. standard

CPU time 1.0 xRT
Word acc. (male) 90.7

Word acc. (female) 93.5
Word acc. (GD avg.) 92.1

Julius-3.2, CPU: Pentium III 850MHz

6. Conclusions

A two-pass, open-source large vocabulary continuous
speech recognition engine Julius has been introduced. It
has an ability to achieve word accuracy of 95% in accu-
rate setting, and over 90% in real-time processing in 20k-
word dictation. It is well modularized with simple and
popular interface to be used as an assessment platform. It
provides total recognition facility with the current state-
of-the-art search techniques open to all researchers and
developers engaging in speech-related works.

It has been used by many researchers and developers
in Japan as a standard system. Future work will be dedi-
cated to further refinement of performance (especially in
memory usage), stability and more documentation. The
main WWW page is on the URL below:
http://winnie.kuis.kyoto-u.ac.jp/pub/julius/

7. Acknowledgment

Part of the work is sponsored by CREST (Core Research
for Evolutional Science and Technology), Japan.

8. References
[1] P.R. Clarkson and R. Rosenfeld: Statistical Language

Modeling Using the CMU-Cambridge Toolkit, In Proc.
of ESCA Eurospeech’97, vol.5, pages 2707–2710, 1997.

[2] S.Young, J.Jansen, J.Odell, D.Ollason and P.Woodland:
The HTK Book, In Entropic Cambridge Research Lab.,
1995.

[3] http://www.lang.astem.or.jp/CSRC/

[4] T.Kawahara, A.Lee, T.Kobayashi, K.Takeda,
N.Minematsu, S.Sagayama, K.Itou, A.Ito, M.Yamamoto,
A.Yamada, T.Utsuro, and K.Shikano: Free Software
Toolkit for Japanese Large Vocabulary Continuous
Speech Recognition, In Proc. ICSLP, Vol.4, pages
476–479, 2000.

[5] A.Lee, T.Kawahara and S.Doshita: An Efficient Two-
Pass Search Algorithm using Word Trellis Index, In Proc.
ICSLP, pages 1831–1834, 1998.

[6] A.Lee, T.Kawahara, K.Takeda and K.Shikano: A New
Phonetic Tied-Mixture Model for Efficient Decoding, In
Proc. IEEE-ICASSP, pages 1269–1272, 2000.

[7] A.Lee, T.Kawahara and K.Shikano: Gaussian Mixture
Selection using Context-independent HMM, In Proc.
IEEE-ICASSP, 2001.


