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Abstract—Detecting user dissatisfaction with system responses
is an important task for situated spoken dialogue systems. In this
work we train models to predict negative user reactions which
display this dissatisfaction. The dialogue scenario used in this
work is attentive listening and we use two distinct corpora for
analysis. We take a multimodal approach and use audio, visual
and linguistic features in our model. Results show that audio
features are the most influential and multimodality improves
model performance. The importance of visual and linguistic
modalities differ according to the type of corpus. We identify
the key features of each corpus and find that a model trained
on both corpora with seven key features reaches a precision of
0.562, outperforming the baseline for this task.

I. INTRODUCTION

Spoken dialogue systems have advanced in recent years with
more accurate automatic speech recognition (ASR) and large
language models (LLMs). However, in a situated environment
there is still a need to gauge the reaction of the user towards
system utterances, particularly negative reactions. We define
negative reactions as user behaviors that indicate some kind of
dissatisfaction with the response.

While user reactions to text-based chatbot systems can only
be inferred based on text input, situated spoken dialogue sys-
tems provide information on the user state through modalities
such as the tone of voice and facial expressions. By analyzing
this multimodal data, we can potentially create a model which
can detect negative reactions in real-time.

During robot conversation, system or dialogue model errors
can produce negative reactions, so evaluation models could
be used to detect these. However there are other reasons why
users may be dissatisfied with the dialogue system, such as if
the response is uninteresting as in Fig. 1. In this case there
is nothing wrong with the dialogue itself, but the user still
appears dissatisfied. Our target phenomena is related to the
state of the user, not the performance of the system.

Another contribution of this work is to understand the
relative importance of the individual features in our multimodal
model. In this work we train models on two separate corpora
with different user demographics and analyze feature impor-
tance for each of them. We then identify common important
features for use in a more generalizable model. We require
this type of analysis to understand what makes a reaction
“negative” and to act as a basis for discussion and future
research directions. The dialogue system and experiments
described in this work were carried out in Japanese.

Fig. 1. Target of phenomena of this work. We study the reaction of the user
after a system response and predict if they are dissatisfied even if the response
is appropriate.

II. RELATED WORK

Detection of robot errors through multimodal social signals
has been a focus of much previous work [1]–[4] with several
of these being applied to collaborative tasks. Other research
attempts to classify confusion during interactions [5]–[7] al-
though some are unimodal or are not designed to be used in a
real-time system. For spoken interaction, dialogue breakdowns
are also a common research topic [8]–[10]. These works
often attempt to use linguistic analysis to detect breakdowns,
although other modalities have been tested [11], [12]. Other
studies aim to detect disengagement [13]–[15] as a means to
understand when the user has lost interest.

We use these previous works as grounding for this research,
where user reactions are modeled in free-talk conversation.
Our work is differentiated by the target phenomena and the
scenario. Firstly, we do not aim to detect system errors in
the conversation, only the reactions of users. There may be
reasons why the user may be dissatisfied with the response
for reasons unrelated to the system, that could be described
as social errors [16]. Several works also elicit reactions by
deliberately inserting system errors into task or conversation
scenarios [5], [17], [18]. In our work the reactions in the
corpus arise naturally during conversation and are not a result
of deliberate manipulation.

Secondly, the nature of free talk is that interaction between
the user and system is through dialogue alone, although in our
particular case the user does the majority of talking. Unlike
other works [2], [17] there is no set task for participants in
the conversation. The success of the conversation is based



primarily on the user’s perception and their behaviors are
varied and in some cases the signals are subtle, arguably
making this task more difficult than task-based scenarios.

III. DIALOGUE SYSTEM

In this work we use attentive listening as the scenario for the
spoken dialogue system. The goal is for the system to act as an
empathetic listening partner by listening to the talk of the user
and providing meaningful responses. In this work both casual
and more serious talks are analyzed as two distinct corpora.

We use our previous attentive listening dialogue system,
details of which can be found in previous work [19], [20].
In the attentive listening scenario, the user does the majority
of talk while the system uses several types of responses. The
general approach is to extract a focus word which is used to
generate these responses. For example, if the user is talking
about pasta the dialogue system may produce an elaborating
question such as “What type of pasta?”.

This type of dialogue can produce negative reactions if the
dialogue system makes a mistake. There are also situations
where the dialogue system produces a coherent response, but
it is not engaging enough for the user. The reaction of the user
can indicate whether the response is actually satisfactory.

The nature of attentive listening makes detecting reactions
different than for task or collaboration-based agent systems.
Users often continue with their talk even if the system makes
a mistake, but signal their dissatisfaction through audio and
facial cues. These dissatisfaction signals, although subtle, may
be obvious for humans to understand but pose a challenge for
autonomous models.

IV. DATA COLLECTION AND ANALYSIS

We collected sessions of users engaging with the attentive
listening dialogue system. We compare two distinct corpora
with differing subjects and topics - elderly and COVID. The
first corpus is with elderly subjects and the topic of conversa-
tion was casual, such as a recent trip or an interesting episode
in their life. The second corpus is comprised of university
students, with the topic of conversation being their experiences
during the COVID pandemic.

The interface is the android ERICA, a humanoid robot with
a custom-built text-to-speech system. Users were instructed
that they would be talking with ERICA and were given time
to prepare their talk. Each session lasted for approximately 5-
10 minutes and there were 56 sessions in total (36 from the
elderly corpus and 20 from the COVID corpus).

Two experts viewed video of the corpora and independently
annotated each of the adjacency pairs surrounding non-generic
system responses as shown in Fig. 2. They then discussed their
annotations together to generate the final labels.

We first annotated the appropriateness of the system re-
sponse in the first adjacency pair to confirm that user reactions
are not just correlated with the appropriateness of the actual
system utterance. For attentive listening an appropriate utter-
ance is a question or assessment which can stimulate more
talk from the user. If an elaborating or repeated question was

Fig. 2. Overview of annotation targets. Annotators used the 1st adjacency
pair to assess appropriateness and the 2nd to evaluate user reaction.

Fig. 3. Annotation results of the two corpora. The left side shows the
distribution of system utterances which are both appropriate and followed by
a user reaction which is not negative. The right side is the subset of “Other”,
showing utterances which have either a negative reaction, are inappropriate,
or both.

used, it was only deemed appropriate if the focus word was
uttered by the user and that there was no other focus word
which would have been more appropriate.

Annotation of user reaction is toward the second adjacency
pair, without considering the content of the response. Annota-
tors were asked to observe the user’s reaction and speech to
determine if they were dissatisfied with the preceding response.

The elderly and COVID corpora consists of 411 and 201
non-generic responses respectively. Fig. 3 summarizes the
distributions of reactions and appropriateness for non-generic
responses. Our analysis shows that there are still a significant
number of utterances which are appropriate but are followed
by a negative reaction by subjects. We justify our focus on neg-
ative reactions as not completely caused by dialogue mistakes
and therefore should be studied as a separate phenomena.

V. DATA MODALITIES

In this section we describe the modalities which will be
investigated in this work as predictors of negative reactions.

A. Audio features

We extract pitch and power information using an online
pitch tracker [21]. Audio is divided into system and user inter-
pausal units (IPUs) with a 200ms segmentation for silence.
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Fig. 4. Target time windows for extracting features.

All IPUs are transcribed and turn-taking was annotated to
accurately handle backchannel utterances.

B. Facial action units and head pose

We also used the well-known facial action units (AUs) [22]
which have also been used in previous research for error
detection [2]. These are a taxonomy of specific movements or
features in the face and are extracted and classified for each
frame of the video using the OpenFace toolkit [23]. There are
two types of output - the presence of an action unit (AUP)
and the intensity of an action unit (AUI). AUPs are a binary
value while AUIs are scored on a 5-point scale, higher values
having more intensity. We also used OpenFace to extract head
position and rotation information for each frame.

C. Linguistic features

We also used the capabilities of using automatic evaluation
as a tool to predict reactions and appropriateness. For this
task we used ChatGPT [24], asking the model to evaluate the
system response on a scale of 1 to 10, using the following
prompt with the previous user turn and system response:

“A and B are having a short dialogue in Japanese. Rate
the appropriateness of B’s response to A’s talk on a scale of
1 to 10, with 1 being completely inappropriate and 10 being
completely appropriate.”

We use this numerical rating directly as a feature in the
model to capture negative reactions which are a result of
inappropriate or incoherent responses.

VI. MODELS

In this section we describe the construction of several
models used in this work and their features sets.

A. Windows of analysis

First we decide the target time window for analysis for
prosodic and visual features, shown in Fig. 4. We denote the
beginning and end of the system response as s0 and sn and
the next user IPU (not the entire turn) as u0 and un. Note that
in the case of overlapping turns it is possible that sn ≥ u0.

Prosodic features are extracted from u0 to un, as they are
calculated only for the user’s IPU. For the AU model the target
window is s0 to sn + 3 to capture the visual features straight
after the system begins its response.

TABLE I
FEATURE SET USED FOR MODELS.

Feature type Description and no. of features
Audio (IPU) turn switch time, IPU length (2)
Audio (prosodic) mean + median power diff., unvoiced % (3)
Visual (AUs) AUP percentages, AUI averages (35)
Visual (pose) Total head position and rotation change (2)
Linguistic ChatGPT rating (1)

B. Feature selection and extraction

For audio features we used turn switch time and the du-
ration of the next user’s utterance to capture hesitations and
fillers which may indicate confusion. For prosodic features we
extracted the difference in mean and median power of the next
user IPU compared to the corresponding values over the entire
session. The aim was to capture self-talk, which was found in
negative reactions in previous work [5]. The percentage of the
IPU that was unvoiced (no pitch detected) was also included
to find disfluencies in user speech indicating confusion.

For action unit features, we used the the percentage of
presence for each AUP and the average value of the AUIs
over the target window. We also calculate the total movement
of the head over the window (position and rotation) similar to
previous work [5]. Table I provides an overview of the features
used. In total there are 43 features.

We also attempted to use streamed audio as an input to fine-
tuned transformer models, however these were unsuccessful.
Therefore, in this work we focus on the relatively simpler
statistical classifiers.

VII. RESULTS

We implemented logistic regression, random forests and
XGBoost classifier models using the Python toolkit scikit-
learn [25]. Each model was trained using 10-fold cross-
validation and 100 trials on the dataset were conducted to
account for differences in the folds. We tested different sub-
sets of features: audio, visual and linguistic. Hyper-parameter
selection through grid search was used for the random for-
est and XGBoost models. Default values for random forest
were satisfactory but for XGBoost we twe set the hyper-
parameters of learning_rate= 0.3, max_depth= 4,
min_child_weight= 7 and colsample_bytree= 0.5.
In this work we focus on improving precision to increase our
confidence in a negative reaction prediction.

Models were trained on each corpus. We compare them to
a baseline which randomly predicts the user reaction based on
the distribution of the corpus. Results for the elderly corpus
are shown in Table II. Logistic regression with all features was
the best performing in terms of recall and F-score. However
random forest and XGBoost models are better for precision.
Multimodality improves the audio-only models.

Results for the COVID corpus are displayed in Table III.
For this corpus using the ChatGPT evaluation improves the
audio-only model, but adding visual features does not.

To understand the contribution of the features, we analyzed
the models using Shapley Additive Explanations (SHAPs)[26]
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TABLE II
PERFORMANCE FOR MODELS TRAINED ON ELDERLY CORPUS.

Model Precision Recall F-score
Baseline 0.253 0.253 0.253

Logistic Regression
Audio 0.446 0.558 0.496
Visual 0.340 0.567 0.424
Audio + Visual 0.42 0.606 0.496
Audio + Linguistic 0.433 0.558 0.487
All 0.426 0.606 0.500

Random Forest
Audio 0.595 0.423 0.494
Visual 0.563 0.173 0.265
Audio + Visual 0.630 0.327 0.430
Audio + Linguistic 0.568 0.404 0.472
All 0.633 0.298 0.405

XGBoost
Audio 0.547 0.394 0.458
Visual 0.459 0.163 0.241
Audio + Visual 0.569 0.394 0.466
Audio + Linguistic 0.512 0.423 0.463
All 0.577 0.394 0.469

TABLE III
PERFORMANCE FOR MODELS TRAINED ON COVID CORPUS.

Model Precision Recall F-score
Baseline 0.398 0.398 0.398

Logistic Regression
Audio 0.554 0.575 0.564
Visual 0.361 0.438 0.395
Audio + Visual 0.479 0.562 0.517
Audio + Linguistic 0.540 0.588 0.563
All 0.495 0.575 0.532

Random Forest
Audio 0.533 0.500 0.516
Visual 0.500 0.250 0.333
Audio + Visual 0.510 0.312 0.388
Audio + Linguistic 0.594 0.512 0.550
All 0.480 0.300 0.369

XGBoost
Audio 0.590 0.488 0.534
Visual 0.490 0.312 0.381
Audio + Visual 0.523 0.425 0.469
Audio + Linguistic 0.611 0.550 0.579
All 0.531 0.425 0.472

on the XGBoost model which included all the features. We
calculated the average SHAP values for every sample over
100 trials. We generated a plot which shows the SHAP value
of every sample in a corpus and orders it by the contribution
towards the model. The SHAP summary for both corpora are
shown in Fig. 5, with only the top 15 features displayed.

For both corpora the feature which contributes the most is
turn switching time, with a higher time more likely to be a
negative reaction. However many other features are important
in one corpus but not the other. For example, the average
intensity of AU20 (lip stretcher) is a strong contributor to the
elderly model, but not for the COVID model. Only in the
COVID corpus is the GPT rating score a contributing feature.

For a combined model we decided to only use the features
that were present in both corpora’s top 15 SHAP features. This
resulted in 7 features as shown in Table IV.

There are two audio features (switch time and utterance
duration) and five visual features. The AUs themselves are

TABLE IV
FEATURES IN THE TOP 15 SHAP VALUES FOR BOTH CORPORA.

Feature Rank (elderly) Rank (covid)
Turn switch time 1 1
Utterance duration 3 7
AU4 (brow lowerer) average 6 4
AU9 (nose wrinkler) average 5 11
AU5 (upper lid raiser) average 12 8
AU6 (cheek raiser) average 15 12
AU17 (chin raiser) percentage 13 15

TABLE V
PERFORMANCE FOR XGBOOST MODELS TRAINED ON BOTH CORPORA.

Model Precision Recall F-score
Baseline 0.301 0.301 0.301
Audio 0.510 0.402 0.450
Visual 0.547 0.223 0.317
Audio + Visual 0.575 0.418 0.484
Audio + Linguistic 0.511 0.391 0.443
All 0.545 0.397 0.459
Minimal 0.562 0.418 0.480

in all different parts of the face: eyebrow, eyelid, cheek, nose
and chin. AU intensities over the target window appear to be
more influential than just the presence of AUs.

Longer turn switching times are correlated with negative
reactions, which is intuitive as users hesitate. However, for
utterance duration the opposite pattern is true. This can be
explained by the fact that many users acknowledged the system
after it responded, with the first IPU being “hai”. For negative
reactions, it was more likely that this acknowledgment was not
given as users hesitated before continuing their talk.

For the visual features, negative reactions were associated
with a lower intensity of brow lowering (AU4), upper lid
raising (AU5), and nose wrinkling (AU9). However, for the
intensity of cheek raising (AU6) and the amount of chin raising
(AU17) the patterns were different between corpora.

We trained XGBoost models on both corpora and included
our minimal model which was trained using only the seven
features shown in Table IV. Results are shown in Table V.

For the combined corpus, the model using all audio and
visual features is the best performing. However the minimal
model also shows similar performance with a fewer number
of features. Fig. 6 also shows the generated SHAP summary
plot for the minimal model. The order of feature importance of
the previous SHAP analyses is maintained, with audio features
being the most influential.

VIII. DISCUSSION

Our results showed that a multimodal approach is needed
for negative reaction prediction and that the two corpora
required different types of models for improved performance
over an audio-only model. For elderly people visual features
had a large effect, while for the university students ChatGPT
evaluations were more useful for predicting negative reactions.
This discrepancy could be a result of either the demographics
of the subjects or the nature of the talk.

Our SHAP analysis identified a subset of features which
could best contribute to the model. According to our minimal

4



Fig. 5. SHAP value summary plots for elderly (left) and COVID (right) corpora. The top 15 features are listed in order of importance. Each point represents
one sample with color signifying the relative value of the feature. Points towards the right side are more likely to be classified as negative reactions.

Fig. 6. SHAP summary for minimal model.

model, we can describe an exemplar of a negative reaction
as when the user hesitates before responding to the system
and continues with their talk without acknowledgment. They
tend not to move the middle of their face, except to raise their
eyelids. These features should not be seen as highly reliable,
but it does allow us to provide explainability to our model and
for future work this type of analysis is critical.

Our models were trained only on attentive listening data
so we cannot prove that they would generalize to other open-
domain dialogue scenarios. Attentive listening is quite different
from mixed-initiative free talk where the user can ask questions
to the system. It is possible that question-answering errors will
be reacted to more strongly than those in our corpora.

There are several limitations in this work. Due to privacy
concerns, the annotations of user reactions were conducted
by only two experts. An approach with crowd-sourcing could
produce different labels, although they may be more inconsis-
tent. We also found that using powerful transformer models
with audio streams was not successful even with fine-tuning,
perhaps due to the comparatively low number of samples.

IX. CONCLUSION

We used multimodal features to detect negative reactions
in two attentive listening corpora. We extracted audio, visual
and linguistic features and trained models on each corpora,
finding that facial action unit features were important in the
corpus of elderly subjects, while ChatGPT evaluation was
more influential for university students. We then used SHAP
values to identify seven key features and trained a combined
model which had comparable performance to one which used
significantly more features.
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