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ABSTRACT

This paper describes an essential improvement of a state-
of-the-art automatic piano transcription (APT) system that
can transcribe a human-readable symbolic musical score
from a piano recording. Whereas estimation of the pitches
and onset times of musical notes has been improved dras-
tically thanks to the recent advances of deep learning, es-
timation of note values and voice labels, which is a cru-
cial component of the APT system, still remains a chal-
lenging task. A previous study has revealed that (i) the
pitches and onset times of notes are useful but the per-
formed note durations are less informative for estimating
the note values and that (ii) the note values and voices have
mutual dependency. We thus propose a bidirectional long
short-term memory network that jointly estimates note val-
ues and voice labels from note pitches and onset times
estimated in advance. To improve the robustness against
tempo errors, extra notes, and missing notes included in
the input data, we investigate data augmentation. The ex-
perimental results show the efficacy of multi-task learning
and data augmentation, and the proposed method achieved
better accuracies than existing methods.

1. INTRODUCTION

The ultimate goal of automatic piano transcription (APT)
is to convert a piano recording into a human-readable mu-
sical score that can be used for music analysis and perfor-
mance [1]. This is a challenging task because of the poly-
phonic nature of piano music; musical notes form weakly-
synchronous multiple streams called voices running in par-
allel. Much work on APT aims to estimate not a musical
score but a piano roll from a music signal, i.e., estimate the
quantized pitches and non-quantized onset times of musi-
cal notes [2–7]. Although noticeable research progress has
independently been made for multipitch detection [8–10]
and rhythm transcription [11, 12], estimation of note val-
ues and voice labels, which is crucial for score typesetting
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Figure 1. Overview of proposed method that jointly esti-
mates note values and voice labels from transcribed pitches
and onset times.

with high readability [13], still remains a challenging task.
Note that the note value represents the duration of a note
on a symbolic musical score, and the voice label of a note
specifies one of the voices of the upper or lower staff (right-
or left-hand part) the note belongs to (Fig. 1).

Several attempts have been made for estimating voice
labels for piano scores having no voice labels [14–17].
Under an assumption that each voice has a strictly mono-
phonic structure and note values are already transcribed
with a certain degree of accuracy, voice labels can be esti-
mated accurately [18,19]. In practice, however, each voice
has a homophonic structure consisting of concurrent notes
(chords) and accurate estimation of note values is still an
open problem. To deal with such a realistic situation, a
state-of-the-art APT method uses a rule-based cost func-
tion with limited performance [20]. This calls for a princi-
pled statistical approach based on modern deep learning.

Note value estimation has relatively scarcely been stud-
ied [4, 21] and is still considered a challenging task [20].
Nakamura et al. [21] conducted a detailed statistical anal-
ysis and found that (i) the pitches and onset times of notes
are useful but the performed note durations are less infor-
mative for estimating the note values and that (ii) the note
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values and voices have mutual dependency. The second
conclusion derives from the fact that in a voice stream, the
offset time of a note usually matches the onset time of the
next note, or equivalently, short rests are rarely inserted
between notes [4]. This indicates that joint estimation of
note values and voice labels is an effective way of bringing
improvements on both tasks.

In this paper, we propose a deep neural network (DNN)
that estimates note values and voice labels jointly from a
transcribed sequence of pitches and onset times for audio-
to-score APT. Specifically, we train a bidirectional long
short-term memory (BiLSTM) network in multi-task learn-
ing. We also investigate data representation, network ar-
chitecture, post-processing, and data augmentation, which
are considered to have an impact on the estimation perfor-
mance. We report experimental evaluation conducted on
datasets of classical and popular music, to investigate the
efficacy of the joint estimation framework.

Our main contribution is to propose joint estimation of
note values and voice labels based on deep learning. Com-
bined with the state-of-the-art methods for multipitch de-
tection and rhythm transcription used in the latest piano
transcription system [20], we can achieve the state-of-the-
art performance of audio-to-score APT. Another contri-
bution is to propose new evaluation metrics for the poly-
phonic music transcription task, extending the one pro-
posed in [22] to deal with voice labels. The example tran-
scription results and the source code for the evaluation tool
are available on the accompanying webpage 1 .

2. RELATED WORK

This section reviews methods for audio-to-score piano tran-
scription, note value estimation, and voice separation.

2.1 Audio-to-Score Piano Transcription

Some piano transcription methods that can yield symbolic
piano scores have been proposed, and the methods consist-
ing of multi-stage processing [13, 20] achieved high accu-
racies. Cogliati et al. [13] proposed a transcription method
that performs rhythm quantization and voice estimation for
a piano performance MIDI file and generates a piano score.
This method uses metrical, stream, and harmonic struc-
tures from the MIDI sequence estimated by a probabilis-
tic model by Temperley [4]. Shibata et al. [20] proposed
a state-of-the-art transcription method that can generate a
piano score from audio signals with multi-stage process-
ing. The method first estimates from a piano recording
a performance MIDI sequence consisting of pitches, on-
set and offset times, and velocities using a convolutional
neural network (CNN). The onset times are then quantized
using a hidden Markov model (HMM). After note values
and voice labels are separately estimated, piano scores are
generated using MuseScore 3. In this study, we jointly es-
timate note values and voice labels, and aim to improve the
accuracies that were lower than those of pitches and onset
times in the method.

1 https://nvvest.github.io

There are also end-to-end approaches that directly es-
timate musical scores from audio signals. Carvalho et al.
[23] proposed a seq2seq model that estimates from an au-
dio signal a piano score represented in the Lilypond music
notation language. Román et al. [24] used a convolutional
recurrent neural network (CRNN) that estimates a musi-
cal score represented in the **kern format. The network is
trained with a connectionist temporal classification (CTC)
loss function. These end-to-end methods have been tested
only on very short or synthetic recordings, and there has
been no account in the literature describing how well they
perform in practice.

2.2 Note Value Estimation

Note value estimation is a difficult problem because note
values do not always correspond to the performed dura-
tions [21]. Temperley [4] proposed a rhythm quantization
method based on a probabilistic model. The method quan-
tizes onset times by estimating beat positions. After voice
labels are estimated, an offset time is set to the onset time
of the next note in the same voice. One of the problems
of the method is outputting no rests that are essential to
make scores easy to read. Nakamura et al. [21] proposed
a method based on Markov random fields. The method
consists of a context model that represents a distribution
of note values given pitches and onset times, and a perfor-
mance model that generates actual performance durations
from note values. It was shown that the performance model
had a small impact on the estimation performance [21].
Therefore, we estimate note values only from pitches and
onset times and do not use performed durations.

2.3 Voice Separation

Voice separation aims to divide musical notes into groups
of notes representing musical streams. Karydis et al. [15]
proposed a rule-based voice separation method for sym-
bolic piano scores. The method is based on vertical inte-
gration, which integrates notes with the same onset time
and the same duration, and horizontal integration, which
integrates notes close in time and pitch. While this method
can deal with homophonic voices, most other methods can
only estimate monophonic voices. McLeod et al. [18] pro-
posed a voice separation method for MIDI data using an
HMM, and achieved high accuracy. Valk et al. [19] pro-
posed a DNN-based voice separation method. The method
uses a deep feedforward neural network that classifies each
note represented by 33 handcrafted features into five classes.
In piano transcription, these existing voice separation meth-
ods are not appropriate because voices often contain chords
and durations are not estimated precisely. Explicit hand-
part and voice labeling (rather than clustering) are also nec-
essary for typesetting piano scores; for example, voice la-
bels are used for determining the directions of note stems.
Shibata et al. [20] proposed a cost-function-based voice
separation method. Although this method is applicable to
the situation of piano transcription, there is room for im-
provement in accuracy. We attempt to develop an improved
DNN-based method.
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Figure 2. Data representation of the input and the output
of the BiLSTM network.

3. PROPOSED METHOD

In this section, we propose BiLSTM networks that jointly
estimate note values and voice labels, post-processing meth-
ods that correct the estimated note values, and data aug-
mentation methods.

3.1 Problem Specification

Each note zn = (pn, on, dn, vn) in a musical score is rep-
resented by a pitch pn, an onset time on, a note value dn,
and a voice label vn. The pitch pn ∈ {0, . . . , 127} is repre-
sented by a MIDI note number (60 = C4). The onset time
on ≥ 0 and the note value dn ∈ {0, . . . , 479} are repre-
sented by integers (one measure is divided into 48 units); a
zero note value is used for a grace note. Note that different
meters have different tatum units: for example, a quarter
note is represented as 12 in 4/4 time and 16 in 3/4 time.
The maximum number of voices in each hand part is set
to 4, following the convention for score notation used in
score editing software such as MuseScore3 and Finale; la-
bels vn = 1, 2, 3, 4 are used for the right-hand part and
vn = 5, 6, 7, 8 for the left-hand part. We represent a pi-
ano score as a sequence of notes Z = {zn}Nn=1, where
notes are arranged in the increasing order of onset times,
and notes with the same onset time are ordered according
to the pitches. Our goal is to estimate the note values and
voice labels {(dn, vn)}Nn=1 from a given set of pitches and
onset times {(pn, on)}Nn=1.

3.2 BiLSTM Network

We propose a BiLSTM network that estimates note values
and voice labels from pitches and onset times. We first
represent the onset time on as the interval from the pre-
vious onset in ∈ {0, . . . , 767} and the metrical position
bn ∈ {0, . . . , 47} calculated as follows:

in = on − on−1, bn = on mod 48. (1)

The input is then represented as X = {(pn, in, bn)}Nn=1

and the output is Y = {(dn, vn)}Nn=1 (Fig. 2).
The proposed network architecture is shown in Fig. 3(a).

Each musical note of input X is represented as a (128 ×
768× 48)-dimensional one-hot vector. These one-hot vec-
tors are first transformed to 25-dimensional feature vectors
by a fully connected layer. The resulting vectors are then
transformed to 50-dimensional vectors (latent representa-
tions) through a BiLSTM layer. Note value probabilities
πn(X) = {πn(d;X)}479

d=0 and voice label probabilities

φn(X) = {φn(v;X)}8v=1 are separately calculated at each
time step n after passing through fully connected layers
and softmax layers, where πn(d;X) denotes the probabil-
ity that the n-th note has duration d and φn(v;X) denotes
the probability that the n-th note is in voice v.

We train the network by minimizing a cross-entropy
loss function given by

L = Ld + Lv, (2)

where

Ld = −
N∑

n=1

log πn(d
∗
n;X), (3)

Lv = −
N∑

n=1

log φn(v
∗
n;X), (4)

where d∗n and v∗n are the correct note value and voice label,
respectively. In the inference step, note values and voice
labels are estimated from given pitches and onset times X
as follows:

d̂n = arg max
d

πn(d;X), (5)

v̂n = arg max
v

φn(v;X), (6)

where d̂n and v̂n indicate the estimated note value and
voice label, respectively.

3.3 Alternative Network Architectures

The network architecture in Fig. 3(a) is a simple joint net-
work that equally treats the note value and voice label prob-
abilities. We call this network SIM (simultaneous). We ex-
amine other network architectures shown in Fig. 3. As dis-
cussed in the Introduction, the voice structure has a strong
impact on determining note values. To reflect this depen-
dency structure, we propose the second network architec-
ture (VLF; voice label first). In this network (Fig. 3(b)),
voice labels are estimated first and note values are esti-
mated with the latent representations used to estimate voice
labels. For comparison, we also consider the third network
architecture (NVF; note value first) that has a reverse struc-
ture (Fig. 3(c)). The networks SIM, VLF, and NVF are
trained in a multi-task learning framework by minimizing
the loss function L in Eq. (2). To confirm the efficacy of
multi-task learning, we examine the fourth network archi-
tecture (IND; independent) that estimates note values and
voice labels independently (Fig. 3(d)). IND consists of two
BiLSTM networks and they are trained separately: by min-
imizing the loss functions Ld and Lv, respectively. In all
the network architectures, the first fully connected layer
outputs 25-dimensional vectors, and each BiLSTM layer
outputs a 50-dimensional hidden vector at each time step.

3.4 Post-Processing Methods

The note values and voice labels {(d̂n, v̂n)}Nn=1 estimated
by the network are sometimes inconsistent with the musi-
cal convention. As general rules, notes with the same onset
time and the same voice should have the same note values.
Also, the offset times of those notes should not be larger
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Figure 3. Proposed BiLSTM networks for estimating note values and voice labels. The four architectures are ex-
plained in Section 3.3.

than the next onset time in that voice. For two notes n and
m in the same voice, these constraints are represented as
follows:

on = om =⇒ dn = dm, (7)

on < om =⇒ dn ≤ om − on. (8)

To impose the constraints, we consider three possible
post-processing methods to adjust the estimated note val-
ues {d̂n}Nn=1. Let {nk}Kk=1 index a set of notes with the
same onset time in the same voice. In the first method
(PP1), the note values {d̂nk

}Kk=1 are all set to the interval
to the next onset time as in [13]. Note that in this method
note values are determined by the estimated voice labels
and the note value probabilities are not used. In the second
method (PP2), the note values are modified to their maxi-
mum value as follows:

d̂′nk
= max

l=1,...,K
d̂nl

. (9)

If the adjusted note values d̂′nk
are longer than the interval

to the next onset time, they are set to this interval. In the
third method (PP3), we calculate the note value with the
maximum probability from the candidate note values that
satisfy the constraints as follows:

d̂′nk
= arg max

d: d≤d′

K∏
l=1

πnl
(d;X), (10)

where d′ indicates the interval to the next onset time.

3.5 Data Augmentation

In the situation under consideration, the pitches and on-
set times used as the input X are estimated in advance by
some pitch and rhythm transcription methods. As the re-
sult, the input contains tempo errors, extra notes, and miss-
ing notes. To make the networks robust to these errors, we
can apply data augmentation methods that add tempo er-
rors, extra notes, and missing notes to the original train-
ing data D. Since rhythm transcription methods often pro-
duce half-tempo and double-tempo errors [20], we create
a tempo-transformed dataset Dt by halving or doubling
the correct onset times and note values. Extra notes pro-
duced by multipitch detection methods often have a pitch
shifted by an octave from a correct note. We thus create
a dataset containing extra notes and missing notes Dem by
randomly deleting correct notes and adding notes whose

pitches differ from correct pitches by one octave. In addi-
tion, to increase the amount of the training data, we imple-
ment another data augmentation method. Assuming that
transposed piano scores are also musically valid, we train
the network using data obtained by transposing the original
data by an interval of δ semitones (δ = −12,−11, . . . , 12).

4. EVALUATION

We report experiments to evaluate the transcription accu-
racy of the proposed method.

4.1 Experimental Conditions

To evaluate the method in a practical condition, we in-
corporated it in an audio-to-score transcription system and
generated transcriptions for test piano recordings. We first
estimated pitches and quantized onset times by the state-
of-the-art methods for multipitch detection and rhythm tran-
scription used in the transcription system in [20]. For the
results (called quantized MIDI data) we estimated note val-
ues and voice labels with the proposed method. We fi-
nally used public score editing software MuseScore 3 for
score typesetting and generated transcriptions in the Mu-
sicXML format (Fig. 1). For comparison, we also gen-
erated transcriptions by existing methods [13, 20] using
the same quantized MIDI data and with the same proce-
dure for score typesetting. The CTD16 method [13] uses
the Melisma Analyzer [4] for estimating note values and
voice labels. The SNY21 method [20] is currently the best-
performing system and uses a statistical model for note
value estimation and a dynamic-programming method for
voice separation.

As test data, we used 30 recordings of classical piano
music in the MAPS-ENSTDkCl dataset [25] and 81 pi-
ano cover recordings of popular music used in [20]. The
ground-truth musical scores for these recordings were pre-
pared in the MusicXML format and used for assessing the
generated transcriptions. We used the musical scores of
80 classical music pieces and 763 popular music pieces
for training the BiLSTM networks; the same training data
were used in [20]. We applied the data augmentation in
Section 3.5 to these training samples.

Proceedings of the 22nd ISMIR Conference, Online, November 7-12, 2021

281



�������

�
�

�
�

� �� ��
�
�

�
�

�

�

��

1

2

3 4 6

5 1 4 5 8

2

3 7

6

�������

� ��
�

��
�
�
�

�

�

Figure 4. Voice structures represented by graphs.

4.2 Evaluation Metrics

We used the edit-distance-based error rates [22] for eval-
uating the quality of generated transcriptions. The error
rates are the pitch error rate Ep, the missing note rate Em,
the extra note rate Ee, the onset-time error rate Eon, and the
offset-time error rate Eoff . They are calculated after align-
ing an estimated score with a correct score. In particular,
we can use the offset-time error rate Eoff as a metric for
evaluating the accuracy of estimated note values. Since
these metrics do not evaluate the accuracy of estimated
voice labels, we consider the voice error rate Ev defined
as the proportion of notes with incorrect voice labels. The
overall error rate Eall is defined as the mean of these six
error rates.

The edit-distance-based metrics have a clear interpreta-
tion: they count how many notes or score elements should
be edited to obtain the correct score. This is an advantage
over other metrics for music transcription [26,27]. We call
the above defined metrics MUSTER (MUsic Score Tran-
scription Error Rates) and the evaluation tool is made avail-
able online 2 .

We also used an F-measure [17] for assessing the qual-
ity of estimated voice labels; this metric is conventionally
used in studies on voice separation. The original met-
ric [17] is formulated for monophonic voices and we here
extend it for homophonic voices. A voice structure can be
represented by a graph, where notes of consecutive chords
in a voice are connected by an edge (Fig. 4). The graph
can be represented by an adjacency matrix (aij), where
aij = 1 when the i-th note is in a chord and the j-th note is
in the next chord of the same voice, and otherwise aij = 0.
We use the notation (aij) for a correct score and (âij) for
an estimated score. The precision Pv, the recall Rv, and
the F-measure Fv are defined as follows:

Pv =

∑
i<j aij âij/ŵi∑
i<j âij/ŵi

, Rv =

∑
i<j aij âij/wi∑
i<j aij/wi

, (11)

Fv =
2PvRv

Pv +Rv
. (12)

Here,
∑

i<j signifies a summation over all notes i and all
notes j that appear after i, and we have defined the weight
for each note i as

wi =
∑
j>i

aij , ŵi =
∑
j>i

âij (13)

in order to normalize the contribution of each chord no
matter how many notes it contains.

2 https://amtevaluation.github.io/

Method Eoff Ev Pv Rv Fv

SIM+DA 33.3 39.1 63.9 64.9 64.0
VLF+DA 32.2 39.0 65.2 65.7 65.1
NVF+DA 32.9 40.7 63.1 62.6 62.5
IND+DA 32.9 40.5 64.1 63.8 63.6
VLF 33.1 39.1 64.3 64.3 64.0

Table 1. Error rates (%) and accuracies (%) of estimated
note values and voice labels for the MAPS dataset. DA
indicates that each network is trained with augmented data.

Method Eoff Ev Pv Rv Fv

SIM+DA 17.9 12.2 87.1 87.3 87.1
VLF+DA 17.2 11.4 87.7 87.7 87.6
NVF+DA 18.1 12.4 87.4 87.2 87.2
IND+DA 18.7 12.5 86.8 86.4 86.5
VLF 17.5 11.4 87.5 87.8 87.6

Table 2. Error rates (%) and accuracies (%) of estimated
note values and voice labels for the J-pop dataset.

Method MAPS J-pop
VLF+DA 32.2 17.2
VLF+DA+PP1 28.0 15.3
VLF+DA+PP2 31.4 16.3
VLF+DA+PP3 32.2 16.8

Table 3. Error rates Eoff (%) of estimated note values with
different post-processing methods.

4.3 Experimental Results

We first compare the four network architectures (SIM, VLF,
NVF, and IND) with or without the application of data
augmentation (DA). The evaluation results are listed in Ta-
bles 1 and 2 for the MAPS dataset and the J-pop dataset, re-
spectively. Among the four architectures trained with data
augmentation, VLF achieved the best accuracy in both note
values and voice labels. The higher accuracy of VLF com-
pared to NVF indicates that it is better to estimate voice
labels first. A comparison between VLF and IND con-
firms the efficacy of multi-task learning. By comparing
the results for VLF with and without data augmentation,
we found a positive effect of data augmentation. Similar
results were obtained for the other network architectures.

We next compare the three post-processing methods (Ta-
ble 3). The first method (PP1) achieved the lowest error
rates. The second one (PP2) slightly reduced the offset
error rates for both datasets. Before and after the third
method (PP3), the error rates were almost the same. In
the first post-processing method, note values are calculated
from estimated voice labels and note value probabilities
estimated by the network are not used. Importantly, this
does not mean that note value estimation was useless in
the present method: estimating note values by the network
was effective for improving the voice estimation through
the multi-task learning, which in turn led to more accurate
note value estimations.

The first method also has a limitation that it cannot es-
timate rests. Rests are used to express articulations and
to make scores easier to read. An example of the tran-
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Method Test Ep Em Ee Eon Eoff Ev Eall Pv Rv Fv

Proposed (VLF+DA+PP1) MAPS 0.67 8.11 6.23 11.6 28.0 39.1 15.6 65.2 65.7 65.1
SNY21 [20] MAPS 0.67 8.11 6.23 11.5 28.3 44.6 16.6 62.4 59.4 60.6
CTD16 [13] MAPS 0.88 13.5 6.33 16.8 44.0 74.3 26.0 56.0 42.5 47.9
Proposed (VLF+DA+PP1) J-pop 0.61 4.03 7.29 2.67 15.3 11.4 6.89 87.6 87.7 87.6
SNY21 [20] J-pop 0.61 4.03 7.29 2.69 20.9 18.0 8.92 78.6 77.0 77.7
CTD16 [13] J-pop 0.82 12.8 7.21 8.48 55.7 65.8 25.1 51.3 38.8 44.0

Table 4. Error rates (%) and accuracies (%) of transcription. The CTD16 method could output results for 27 (72)
pieces in the MAPS (J-pop) dataset; the metrics are calculated from these pieces.ismir_2021_16_gt
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Figure 5. Example transcription results. The proposed
method improved the accuracy of note values.

scription results is shown in Fig. 5, where the proposed
method with the second post-processing method correctly
estimated rests. In the future, it is important to estimate
rests in order to improve the average accuracy of note val-
ues.

We finally compare the proposed method with existing
transcription methods [13, 20]. The full set of MUSTER
metrics and the voice F measure for the MAPS and J-pop
datasets are listed in Table 4. The present method achieved
the best accuracy for both datasets. The transcription ac-
curacies for the MAPS dataset were lower than those for
the J-pop dataset because the former has more complicated
voice structures and there were a small number of classical
music pieces in the training data.

To compare the performance of the voice estimation by
our method with a recent method focusing on voice sepa-
ration, we also evaluated the HMM-based voice separation
method (MS16) [18]. Since this method requires as input
pitches, onset times, and offset times, we used the note
values estimated by the network IND. The F-measures Fv

of the voice separation results by MS16 were 55.7% and
66.5% for the MAPS dataset and the J-pop dataset, respec-
tively. It is confirmed that the proposed method signifi-
cantly outperformed the MS16 method.

An example of the transcription results is shown in Fig.
6, for the proposed method and the SNY21 method. The
proposed method estimated voice labels close to the ground
truth, and made the piano score easier to read than the
one estimated by the SNY21 method. Other examples are
shown on the supplemental web page 3 .

3 https://nvvest.github.io
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Figure 6. Example transcription results. The proposed
method improved the accuracy of voice labels and im-
proved the readability.

5. CONCLUSION

This paper presented a neural method that jointly estimates
note values and voice labels from transcribed pitches and
onset times. Since note values and voices are interrelated,
we constructed a BiLSTM network in a multi-task learn-
ing framework. We demonstrated through experiments that
the proposed method achieved the state-of-the-art perfor-
mance of audio-to-score APT when combined with the lat-
est methods for multipitch detection and onset time quan-
tization.

The error rates of note values and voice labels are still
high compared to the other metrics. In future work, we
plan to further investigate the data representation and net-
work architecture to increase the consistency between es-
timated note values and voice labels. To correctly estimate
rests and improve the readability of transcribed scores, we
will develop a more sophisticated post-processing method
and study the effective use of performed durations.

Although we focused on the estimation of note values
and voices in this study, we found that the result is affected
by errors made by the onset time quantization method. It
is thus important to develop a method that integrates onset
time quantization. As the fully end-to-end approaches still
have difficulties in practical applications [23, 24], it is also
considered effective to unify the multiple stages in Fig. 1
one step after another.
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