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Abstract—This paper describes speech enhancement for real-
time automatic speech recognition (ASR) in real environments.
A standard approach to this task is to use neural beamforming
that can work efficiently in an online manner. It estimates the
masks of clean dry speech from a noisy echoic mixture spectro-
gram with a deep neural network (DNN) and then computes a
enhancement filter used for beamforming. The performance of
such a supervised approach, however, is drastically degraded un-
der mismatched conditions. This calls for run-time adaptation
of the DNN. Although the ground-truth speech spectrogram re-
quired for adaptation is not available at run time, blind dere-
verberation and separation methods such as weighted prediction
error (WPE) and fast multichannel nonnegative matrix factor-
ization (FastMNMF) can be used for generating pseudo ground-
truth data from a mixture. Based on this idea, a prior work pro-
posed a dual-process system based on a cascade of WPE and
minimum variance distortionless response (MVDR) beamform-
ing asynchronously fine-tuned by block-online FastMNMF. To in-
tegrate the dereverberation capability into neural beamforming
and make it fine-tunable at run time, we propose to use weighted
power minimization distortionless response (WPD) beamforming,
a unified version of WPE and minimum power distortionless re-
sponse (MPDR), whose joint dereverberation and denoising filter
is estimated using a DNN. We evaluated the impact of run-time
adaptation under various conditions with different numbers of
speakers, reverberation times, and signal-to-noise ratios (SNRs).

Index Terms—speech enhancement, dereverberation, neural
beamforming, blind source separation,

I. INTRODUCTION

Robust speech enhancement is a key technique in practical
automatic speech recognition (ASR) systems that work in real
time in real environments. For this purpose, one may use blind
source separation (BSS) methods such as multichannel non-
negative matrix factorization (MNMF) [1], [2], independent
low-rank matrix analysis (ILRMA) [3], and FastMNMF [4],
[5]. Among these, FastMNMF is a state-of-the-art method that
has been shown to outperform MNMF and ILRMA [5]. These
methods are based on unsupervised learning (maximum like-
lihood estimation) of probabilistic models of mixture signals
and are thus essentially free from the condition mismatch prob-
lem of supervised learning methods. However, these methods
are hard to use for real-time systems due to the computation-

Fig. 1. The overview of the proposed joint adaptation of dereverberation
and beamforming based on blind dereverberation by WPE and blind source
separation by FastMNMF.

ally demanding iterative optimization required at run time.
In recent years, deep neural networks (DNNs) have widely

been used for speech enhancement. This approach, for exam-
ple, performs direct mapping from a noisy mixture into multi-
ple speech sources [6], mixture-conditioned deep speech gen-
eration [7], [8] for single-channel data, and neural beamform-
ing with a DNN-based mask estimator [9] for multichannel
data. In general, while supervised training of a DNN is com-
putationally demanding, inference with the DNN works fast
even on edge devices [10]. Considering the low-latency and
high-performance nature and the potential contribution to the
ASR [11], we focus on DNN-based beamforming (a.k.a. neu-
ral beamforming) as a front end of real-time distant ASR.

In neural beamforming, a DNN is used for estimating speech
masks in the time-frequency domain. To separate clean speech
from noisy speech mixture, the spatial covariance matrices
(SCMs) of speech and noise are computed from the estimated
masks and a enhancement filter used for beamforming is com-
puted from the SCMs. The DNN is trained in a supervised
manner by using pairs of noisy mixture and clean speech, often
with the directions of the target speakers [10], [12]. However,
it is not realistic to collect training data covering diverse acous-
tic environments that the model is potentially applied to. This
makes the model less robust to unseen acoustic environments.



A promising solution to this problem is a run-time adaptation
of neural beamforming [10], [13]. The biggest challenge in this
task is that no ground-truth data (clean speech) are available
unlike in standard offline benchmarks. To solve this problem,
one can fine-tune a DNN-based mask estimator using pseudo
ground-truth data given by FastMNMF. In a dual-process sys-
tem [10], a light-weight minimum variance distortionless re-
sponse (MVDR) beamforming (front end) is used for streaming
speech enhancement, where the mask estimator is fine-tuned
with the target speech separated by asynchronously-running
FastMNMF (back end), often with the direction of the target
speaker. It has been shown that the ASR performance tends to
improve along with the amount of fine-tuning data (e.g., multi-
party conversation data) [10]. This system also uses weighted
prediction error (WPE) [14], [15], a popular blind dereverbera-
tion method, before MVDR beamforming and FastMNMF for
improved ASR. However, since the adaptation is only applied
to the mask estimator for beamforming, the adaptation capabil-
ity of this system is thus limited to MVDR beamforming only.

In this paper, we propose run-time adaptation of neural beam-
forming for joint speech dereverberation and denoising. Since
WPE works stably in various environments thanks to the unsu-
pervised nature [10], we aim to draw its full potential with its
neural extension. Specifically, we use weighted power minimiza-
tion distortionless response (WPD) beamforming [16], [17], a
unified version of WPE and a minimum power distortionless
response (MPDR), where a DNN-based mask estimator is used
to estimate a unified dereverberation and denoising filter. Both
the speech dereverberation and denoising functions of the sys-
tem can be adapted to a test environment while considering the
mutual dependency of both tasks. We comprehensively investi-
gate acoustic conditions in which the adaptation effectively con-
tributes to the improvement of speech enhancement and ASR.

II. RELATED WORK

This section reviews speech dereverberation based on WPE
[14], [15], speech enhancement based on MPDR beamforming,
joint dereverberation and denoising based on WPD beamform-
ing [16], [17], and BSS based on FastMNMF [5].

A. Dereverberation
WPE is a well-known blind dereverberation method based on

an autoregressive model of late reverberation. Let xft ∈ CM

be the short-time Fourier transform (STFT) spectrum of an
observed mixture captured by an M -channel microphone array
at frequency f ∈ [1, F ] and time frame t ∈ [1, T ], where F is
the number of frequency bins and T is the number of frames.
We assume xft can be decomposed as follows:

xft = dft + rft, (1)

where dft ∈ CM is direct signals with early reflections, rft ∈
CM is the spectrum of late reverberation. The late reverberation
is assumed to be the weighted sum of past observations as
follows:

rft =

L∑
τ=b

WH
fτxf,t−τ , (2)

where Wfτ ∈ CM×M is a mixing filter for delay τ , L is a tap
length, and b is a prediction delay representing the boundary
between the early reflections and late reverberation. The target
dft is thus given by

dft = xft −
L∑

τ=b

WH
fτxf,t−τ . (3)

The filter is estimated by minimizing the weighted power of
the estimated direct signal as follows:

Ŵf = argmin
Wf

Et

[
|xft −

∑L
τ=b W

H
fτxf,t−τ |2

σ2
ft

]
, (4)

where σ2
ft represents the time-varying power spectral density

(PSD) of the target speech. The PSD can be obtained through it-
erative updates of the estimated target speech and its power [18],
or by source mask estimation using a DNN [19].

B. Speech Enhancement

The multichannel signal model in (1) can be rewritten by
decomposing a target speech signal as the product of a steering
vector af ∈ CM and a source sft ∈ C, while considering as
noise other components including non-target components, early
reflections, and late reverberations as follows:

xft = afsft + nft, (5)

where nft is the spectrum of noise. The target speech d̂ft is
estimated by applying an enhancement filter wf0 ∈ CM to the
mixture xft as follows:

d̂ft = wH
f0xft. (6)

In MPDR beamforming [20], the filter is estimated by min-
imizing the power of the observed mixture xft, while main-
taining a distortionless response in the direction of the steering
vector af as follows:

ŵMPDR
f0 = argmin

wf0

Et

[
|wH

f0xft|2
]

s.t. wH
f0af = 1. (7)

The closed-form solution of the optimal filter is given by

ŵMPDR
f0 =

K−1
f af

aHK−1
f af

, (8)

where Kf = Et[xftx
H
ft] is the SCM of the mixture.

C. Joint Speech Dereverberation and Denoising

WPD beamforming is formulated by integrating WPE and
MPDR beamforming for jointly dereverberation and enhance-
ment. Specifiacally, using (3) and (6), the signal obtained with
WPD beamforming is given by

d̂ft = wH
f0

(
xt +

L∑
τ=b

WH
fτxf,t−τ

)
= wH

f xft, (9)

where wf ∈ C(L−b+1)M is an integrated filter consisting of
{wft}t=0,b,...,L and xft ∈ C(L−b+1)M is the concatenation of
the current and past observations {xf,t−τ}τ=0,b,...,L.



Using (4) and (7), the filter wf is estimated as

ŵWPD
f = argmin

wf

Et

[
|wH

f xft|2

σ2
ft

]
s.t. wH

f0af = 1. (10)

The closed-form solution of the optimal filter is given by

ŵWPD
f =

K
−1

f af

aHfK
−1

f a
f

, (11)

where Kf = Et[xftx
H
ftσ

−2
ft ] is the SCM of the mixture com-

pensated by the PSD of the target speech, and af ∈ C(L−b+1)M

is the concatenation of the steering vector af and a zero vec-
tor 0 ∈ R(L−b)M .

Using the SCM of the target speech Rf = afa
H
f |sft|2, (11)

can be reformulated as:

ŵWPD
f =

K
−1

f Rf

tr(K
−1

f Rf )
uq, (12)

where uq ∈ R(L−b+1)M is a one-hot vector whose q-th element
(reference channel) takes one and zero otherwise.

In mask-based WPD beamforming, the PSD σ2
ft and SCM

Rf of the target speech are computed with ŝft = ωftxft, where
a time-frequency (TF) speech mask ωft ∈ [0, 1] is estimated
by a DNN [21], [22].

D. Blind Source Separation

The general goal of BSS is to separate a mixture spectrogram
{xft}F,T

f,t=1 into N source spectrograms {{xnft}F,T
f,t=1}Nn=1,

where xft,xnft ∈ CM . In modern BSS methods, each source
xnft is typically assumed to follow an M -variate circularly-
symmetric complex Gaussian distribution as follows:

xnft ∼ NC(0, λnftGnf ), (13)

where λnft and Gnft are the PSD and SCM of the source n.
Assuming the additivity of complex spectrograms and using the
reproductive property of the Gaussian distribution, the mixture
xft is given by

xft ∼ NC

(
0,

N∑
n=1

λnftGnf

)
. (14)

In MNMF [1], [2] and its variants including FastMNMF [5],
the PSDs {λnft}F,T

f,t=1 are factorized with NMF as follows:

λnft =

K∑
k=1

unkfvnkt, (15)

where unk ∈ RF
+ is a basis vector, vnk ∈ RT

+ is an activation
vector, and K is the number of bases. In FastMNMF, the SCM
Gnf is also factorized as follows:

Gnf = Q−1
f Diag(g̃n)Q

−H
f , (16)

where Qf ∈ CM×M is a time-invariant diagonalization matrix
and g̃n ∈ RM

+ is a frequency-invariant nonnegative vector.
The model parameters {unk}N,K

n,k=1, {vnk}N,K
n,k=1, {Qf}Ff=1,

and {g̃n}Nn=1 are estimated with an iterative optimization algo-
rithm such that the likelihood of the parameters for the mixture

given by (14) is maximized [5]. Given the optimal parameters,
the separation filter wBSS

nft is given by

ŵBSS
nft = QH

fDiag

(
λnftg̃n∑
n′ λn′ftg̃n′

)
Q−H

f uq, (17)

where uq ∈ {0, 1}M is a one-hot vector whose q-th element
(reference channel) takes one and zero otherwise.

III. PROPOSED METHOD

This section describes the proposed adaptive joint derever-
beration and denoising system based on a dual-process ar-
chitecture consisting of mask-based WPD beamforming with
FastMNMF-guided fine-tuning. This system uses the WPD
beamforming to perform low-latency speech dereverberation
and denoising, resulting in a single-channel speech signal use-
ful for the ASR system. To be adaptive to dynamic environ-
ments, its DNN-based mask estimator is fine-tuned at run time
using speech signals dereverberated and separated with high-
latency yet environment-robust WPE and FastMNMF.

A. Joint Neural Speech Dereverberation and Denoising

Given a mixture spectrogram X ≜ {xft ∈ CM}F,T
f=1,t=1

with target speaker DOAs ϕ ≜ {ϕt ∈ [0, 2π]}Tt=1, a DNN
FΘ parameterized by Θ is used for estimating TF masks
ω ≜ {ωft}F,T

f=1,t=1 as follows:

ω = FΘ (X,ϕ) . (18)

The PSD σ̂2
ft and SCM R̂f of the target speech can be

computed using the mask estimate as follows:

σ̂2
ft =

1

M

M∑
m=1

|ωftxftm|2, (19)

R̂f =
1

T

T∑
t=1

ŝftŝft, (20)

where ŝft = [ωftx
⊤
ft, ωf,t−bx

⊤
f,t−b, . . . , ωf,t−Lx

⊤
f,t−L]

⊤ ∈
C(L−b+1)M . The WPD filter ŵWPD

f is then computed from
K̂f =

∑
t xftx

H
ftσ̂

−2
ft and R̂f as in (12). Finally, the target

speech signal d̂ft corresponding to the DOA ϕt is obtained by
applying ŵWPD

f to xft as in (9).

B. Pretraining of Mask Estimator

The DNN-based mask estimator FΘ is pretrained using
triples consisting of an M -channel mixture, a reference speech,
and a target DOA. It is optimized to minimize the negative
signal-to-distortion ratio (SDR) between the estimated time-
domain speech signal d̂ ∈ RS and the reference time-domain
speech signal dref ∈ RS given by

L = −10 log10
d̂⊤d̂

(d̂− dref)⊤(d̂− dref)
, (21)

where S denotes the number of samples. The estimated time-
domain speech signal d̂ is obtained by applying the inverse
STFT to the estimated speech signal in the STFT domain
{d̂ft}F,T

f=1,t=1.



C. Run-Time Adaptation of Mask Estimator

To make the mask estimator FΘ adaptive to environmental
changes, we fine-tune it at run time using triples of the observed
mixture {xft}F

′,T ′

f=1,t=1, the pseudo ground-truth speech signal
dref
p ∈ RS , and the pseudo ground-truth DOA ϕp to minimize

the negative SDR loss in (21), where F ′ and T ′ are the number
of frequency bins and that of frames of the mixture used for
fine-tuning, respectively.

To obtain the pseudo ground-truth speech signal, we first
dereverberate the mixture xft using WPE as follows:

xdry
ft = xft −

L∑
τ=b

WH
fτxf,t−τ . (22)

where xdry
ft is the dereverberated mixture and Wfτ is a filter

for delay τ . The filter is estimated as (4) with the PSD σ2
ft

obtained through iterative updates of the estimated dereverber-
ated signal xdry

ft and its power σ2
ft [18]. Then, we separate the

sources {{xnft}F
′,T ′

f,t=1}Nn=1 from the dereverberated mixture us-
ing FastMNMF as follows:

xnft =
(
ŵBSS

nft

)H
xdry
ft , (23)

where the separation filter wBSS
nft is calculated as in (17). We

measure the signal quality of each separated source signal us-
ing the reference-less non-intrusive scale-invariant SDR [23],
[24]. We take N ′(≤ N) separated signals that satisfy a pre-
defined threshold α and consider these as pseudo ground-
truth speech signals {dref

p,n}N
′

n=1. Finally, the corresponding N ′

pseudo ground-truth DOAs {ϕp,n}N
′

n=1 are estimated based on
multiple signal classification (MUSIC) [25].

IV. EVALUATION

We report a comprehensive evaluation conducted for assess-
ing the performance of our adaptive system in various simu-
lated acoustic environments.

A. Dataset

For the mask estimator FΘ, we made a training dataset
comprising 36,000 triples and a validation dataset comprising
3,600 triples. Each triple consisted of a 2-second 7-channel
mixture signal, a 2-second 7-channel target speech signal, and
the corresponding target DOA. Each mixture was composed of
two speech signals by different speakers, who were stationary
during the recording, and a diffuse noise signal. The speech
signals were randomly taken from the training set (for the
training dataset) and the development set (for the validation
dataset) of Librispeech [26], while the diffuse or moving noise
signals were randomly taken from the DEMAND dataset [27].

Both mixture and target speech signals were simulated us-
ing Pyroomacoustics [28] by considering a 7-channel circu-
lar microphone array, configured to match the geometry con-
straints of the DEMAND dataset, within a 2-dimensional room.
The room length and width were randomly sampled from uni-
form distributions U(7.6m, 8.4m) and U(5.6m, 6.4m), respec-
tively. The 2-dimensional coordinates of the array center were
sampled from U(3.6m, 4.4m) and U(2.6m, 3.4m), respectively.

The distance between the array center and each speaker was
sampled from U(1m, 2m). The reverberation time (RT60) for
the mixtures was varied between 0.25 and 0.7 seconds. The tar-
get speech signals, which were supposed to include the direct
path and early component, were simulated in the same rooms
as the mixtures, but with the RT60 fixed at 0.25 seconds. In-
door noise signals from the DEMAND dataset, excluding the
environment “PSTATION” that was used for the test set (see
below), were randomly selected and added to the simulated
mixtures, with an SNR between -5.0 and 5.0 dB.

To evaluate the effectiveness of our adaptation method in
various acoustic environments, we prepared a test dataset con-
sisting of seven distinct simulation settings, i.e., one “default”
setting and six variations. The default setting considered mix-
tures of two speakers with an RT60 of 0.5 seconds, an SNR
of 30.0 dB, and other parameters were randomly sampled as
in the pretraining dataset. For the other six settings, we in-
dependently varied the number of stationary speakers (3 and
4), the RT60s (0.8 and 1.2 seconds), and the SNR (5.0 and
-5.0 dB). Speech signals were taken from the test set of Lib-
rispeech, with diffuse or moving noise signals from the en-
vironment “PSTATION” of the DEMAND dataset. For each
setting, we generated 30 triples, each consisting of an approxi-
mately 8-minute mixture, the target speech signal, the target
DOA, and corresponding transcriptions. The first four minutes
of each recording were used for fine-tuning the mask estima-
tor, with the remaining duration reserved for evaluation.

B. Experimental Settings

Both the front and back ends operated in the STFT domain.
The STFT coefficients were computed using a window size of
1024 (F = 513) with a hop length of 256.

For the mask-based WPD beamforming, the prediction delay
and the tap size of the convolutional filter were set to b = 3 and
L = 8, respectively. The TF mask was estimated using a DNN
as in [10]. The DNN was composed of a preprocessing network,
a direction attractor network (DAN), and a bidirectional long
short-term memory (BLSTM) network. The preprocessing net-
work took as input the concatenation of the log magnitude of the
mixture, the inter-channel phase difference, and the beamform-
ing output by delay-sum beamforming, while the DAN took the
target DOA as input. Given the outputs of these two networks,
the BLSTM then estimates a TF mask. This mask estimator
was pretrained on the training dataset using the AdamW opti-
mizer with a learning rate of 10−4 and a batch size of 4. The
model was trained for 20 epochs, and the model with the low-
est validation negative SDR loss was selected for evaluation.

For the joint adaptation of mask-based WPD beamforming,
the prediction delay, the tap size, and the number of iterations
for parameter updates in WPE were set to b = 3 and L = 13,
and 3, respectively. The number of sources, the number of
bases, and the number of iterations for parameter updates in
FastMNMF were set to N = 5, K = 16, and 200, respectively.
The threshold for non-intrusive SI-SDR was set to α = 10.0.
The window size of the mixture given as the input to FastMNMF
was set to 30 seconds. The learning rate was set to 4× 10−5,
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Fig. 2. The evaluation result of the joint adaptation of dereverberation and denoising by mask-based WPD beamforming based on blind dereverberation by WPE
and BSS by FastMNMF. Blue lines refer to the “default” setting, constant across different plots. The shaded regions surrounding each line indicate the 95%
confidence intervals.

and the batch size was 4 for fine-tuning. To stabilize the fine-
tuning, we added the same amount of the pretraining data to the
fine-tuning data so a batch may contain these two types of data.

The evaluation compared different amounts of fine-tuning
data (30, 60, 120, and 240 seconds) against several key met-
rics. These metrics include word error rate (WER), signal-
to-distortion ratio (SDR), short-time objective intelligibility
(STOI), perceptual evaluation of speech quality (PESQ), and
speech-to-reverberation modulation energy ratio (SRMR). We
used a Transformer-based encoder-decoder ASR model from
the SpeechBrain toolkit [29] to measure WER. This ASR model
was trained on the Librispeech dataset. For all metrics except
WER, higher values are better.

C. Experimental Results

Figure 2 shows the evaluation results of the joint adapta-
tion of dereverberation and denoising using mask-based WPD
beamforming with different durations of fine-tuning data and
various simulation settings. The upper left plot in the figure
indicates that our adaptation method improved WER, SDR,
STOI, and PESQ across different numbers of stationary speak-
ers, which proves the effectiveness of our adaptation. These
improvements seem to benefit from the robust separation capa-
bility of FastMNMF for stationary sources.

However, when we used a large ammount of fine-tuning data,
the WER was slightly degraded as the RT60 increased or the
SNR decreased. This would be because the pretrained mask-
based WPD beamforming already has a strong capability of
dereverberation and FastMNMF is less robust to a mixture with
moving sources. In contrast, when we used a small ammount
of fine-tuning data, the ASR performance hardly changed and

the other metrics, STOI, PESQ, and SRMR improved in noisy
or reverberant conditions. This suggests that 30 seconds of fine-
tuning data is optimal for practical use.

V. CONCLUSION

This paper proposes a run-time adaptation method for the
joint neural dereverberation and denoising with mask-based
WPD beamforming using fine-tuning data obtained using WPE
and FastMNMF. Evaluations showed robust improvements of
the ASR performance across different numbers of stationary
speakers, RT60s, and SNRs when we used a small ammount of
fine-tuning data. For future work, BSS methods that are capable
of dealing with more various acoustic conditions should be
investigated to improve the ASR performance even in noisy
conditions with moving sources.
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