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Abstract—This paper describes sound event localization and
detection (SELD) for spatial audio recordings captured by first-
order ambisonics (FOA) microphones. In this task, one may train
a deep neural network (DNN) using FOA data annotated with the
classes and directions of arrival (DOAs) of sound events. How-
ever, the performance of this approach is severely bounded by the
amount of annotated data. To overcome this limitation, we pro-
pose a novel method of pretraining the feature extraction part of
the DNN in a self-supervised manner. We use spatial audio-visual
recordings abundantly available as virtual reality contents. As-
suming that sound objects are concurrently observed by the FOA
microphones and the omni-directional camera, we jointly train
audio and visual encoders with contrastive learning such that the
audio and visual embeddings of the same recording and DOA are
made close. A key feature of our method is that the DOA-wise
audio embeddings are jointly extracted from the raw audio data,
while the DOA-wise visual embeddings are separately extracted
from the local visual crops centered on the corresponding DOA.
This encourages the latent features of the audio encoder to rep-
resent both the classes and DOAs of sound events. The experi-
ment using the DCASE2022 Task 3 dataset of 20 hours shows
non-annotated audio-visual recordings of 100 hours reduced the
error score of SELD from 36.4 pts to 34.9 pts.

Index Terms—Sound event localization and detection, audio-
visual contrastive learning, self-supervised learning

I. INTRODUCTION

Sound event localization and detection (SELD) is a task that
aims to estimate the activations, classes, and directions of ar-
rival (DOAs) of sound events from multichannel audio record-
ings [1]. It is one of the foundations of computational intel-
ligence for understanding acoustic environments. The current
standard approach to this task is to train a deep neural network
(DNN) in a supervised manner using pairs of audio recordings
with ground-truth annotations [2]–[4]. In general, it is difficult
to collect a sufficient amount of annotated audio data cover-
ing a wide range of acoustic environments.

A popular solution to this problem is data augmentation [5],
[6]. Specifically, one can synthesize multichannel audio data
by convolving source signals of various classes with room im-
pulse responses (RIRs) that simulate various acoustic environ-
ments and DOA conditions. This approach is known to effec-
tively improve the performance of SELD for many common
sound events (e.g., music and speech). However, SELD for
some complex sound events (e.g., wildlife sound) remains an
open problem because it is difficult to isolate and capture their
individual sound source signals.

Fig. 1. AV-SSL of an audio feature extractor for SELD.

Another solution is to pretrain an audio feature extrac-
tor that constitutes the front end of a DNN used for SELD
with audio-visual self-supervised learning (AV-SSL) (Fig. 1)
[7]. This approach can make effective use of abundant virtual
reality (VR) contents, each of which consists of multichan-
nel audio data recorded by first-order ambisonics (FOA) mi-
crophones and 360◦ equirectangular visual data recorded by
an omni-directional camera. Considering the cross-modal co-
occurrence between the sounds and appearances of the same
objects, one can jointly train audio and visual encoders in a
contrastive fashion such that the audio and visual embeddings
are made close to each other if they correspond to the same
DOA and recording (positive sample) and far apart otherwise
(negative sample). The front end of the trained audio encoder is
then used for initializing the audio feature extractor for SELD.

Audio-visual spatial alignment (AVSA) [7] is one of the lat-
est AV-SSL methods. It takes advantage of the FOA format, in
which the single-channel audio signal with an arbitrary DOA
can be computed from the observed FOA data. The audio em-
bedding extracted from this enhanced signal are made close to
the visual embedding extracted from the visual crop centered
on the same DOA in the equirectangular visual data. How-
ever, the audio feature extractor trained in this way is insuf-
ficient for SELD because the DOA features of sound events
cannot be extracted from the enhanced signal. On the other
hand, the features useful for DOA estimation of sound events
are not learnable with such non-DOA-aware contrastive learn-
ing equivalent in principle to AVC [8].

In this paper, we propose a DOA-aware extension of AVSA.
Our method differs from the conventional AVSA [7] in that it
jointly extracts audio embeddings over a DOA grid from raw
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FOA audio data without DOA-wise signal enhancement. This
encourages the latent features of the audio encoder to rep-
resent both the classes and DOAs of sound events. In addi-
tion, this paper also tackles one of the remaining challenges
in AVSA that the cross-modal co-occurrence between sound
and appearance does not hold for visible silent objects and
occluded sound objects. In general, meaningful sound events
exist only in a small number of DOAs, which limits this lo-
cal contrastive learning based on the DOA-wise similarity be-
tween audio and visual embeddings.

To mitigate this problem, we also propose global contrastive
learning based on recording-wise audio-visual similarity ob-
tained by averaging the DOA-wise similarities over all the
DOAs. Our goal is to maximize the similarity when the au-
dio and visual embeddings correspond to the same recording
(positive) and minimize it otherwise (negative). To encourage
the audio encoder to extract DOA information as the latent
features, we introduce a data augmentation technique that ran-
domly spatially rotates only the equirectangular visual data to
generate negative samples from the same recording.

II. RELATED WORK

This section reviews existing SELD and AV-SSL methods.

A. Sound event localization and detection (SELD)

The modern approach to SELD is to train a DNN in a su-
pervised manner. For instance, the activations of sound events
are estimated with a DNN, while the DOAs are estimated ge-
ometrically [2]. Both the activations and DOAs can be esti-
mated using a DNN [3]. Recently, an end-to-end approach to
SELD has been proposed for directly estimating a DOA vec-
tor whose length corresponds to the duration of sound events
in the Cartesian coordinate system [4].

To improve the robustness of SELD with a limited amount
of annotated audio data, data augmentation tequniques such
as SpecAugment [9] and Mixup [10] can be employed. Par-
ticularly for audio data provided in the FOA format, rotation-
based augmentation is known to be effective [11]. Multichan-
nel audio data with ground-truth annotations can be synthe-
sized by convolving audio samples of various classes with ar-
bitrary transfer functions [5], [12]. Alternatively, a general-
purpose audio model [13] pretrained with a large dataset of
audio signals called AudioSet [14] in an unsupervised manner
can be used for sound event detection [15].

B. Audio-visual self-supervised learning (AV-SSL)

At the heart of AV-SSL is contrastive learning, which aims
to train audio and visual encoders based on the cross-modal
co-occurrence between the sounds and appearances of objects.
The information encoded in the audio and visual embeddings
may vary depending on the design of positive and negative
samples. AVC [8], for example, uses standard video record-
ings and considers a pair of audio and visual data from the
same recording as a positive sample and a pair of those from
different recordings as a negative pair. The audio and visual
embeddings are thus encouraged to represent the features of

sound event classes. AVSA [7] uses spatial video recordings,
which are originally made for VR application that requires
DOA-based audio-visual rendering. AVSA, however, is essen-
tially identical to AVC because it can be regarded as AVC for
non-spatial video standard recordings obtained by decompos-
ing spatial video recordings in a DOA-wise manner.

Audio-visual temporal synchronization (AVTS) [16] is an-
other AVC-like self-supervised method. A key feature of AVTS
is that it incorporates audio and visual data in the same record-
ing, but at different moments in time, to negative pairs. The
embeddings are thus encouraged to represent both the classes
and activations of sound events.

III. PROPOSED METHOD

This section describes two variants of DOA-aware AV-SSL
to improve SELD. The first variant employs DOA-wise con-
trastive learning, and the other employs recording-wise con-
trastive learning (Fig. 2). In both variants, an audio feature ex-
tractor A is used to transform raw FOA data into the latent au-
dio features that represent sound event classes and DOAs. In
this study, K discrete points on the Fibonacci lattice [17] are
considered as potential DOAs. Each DOA k ∈ [1,K] is defined
by an azimuth angle θk and an elevation angle ϕk. A projec-
tion head H is then used to jointly convert the latent features
to the audio embeddings over the DOA grid. A visual encoder
V , in contrast, is used to separately convert visual crops of a
360◦ equirectangular visual data over the DOA grid to the vi-
sual embeddings. Let I be the total number of recordings.

In DOA-wise contrastive learning, we maximize the local
similarity between DOA-wise audio and visual embeddings
when they correspond to the same DOA (positive sample),
and minimize it otherwise (negative sample). In recording-wise
contrastive learning, in contrast, we maximize global similarity
obtained by averaging the local similarities over the DOA grid
when the audio and visual embeddings correspond to the same
recording (positive), and minimize it otherwise (negative).

Once A, H, and V are trained jointly in a self-supervised
manner, A is connected to another head H′ for SELD and the
entire network is fine-tuned in a supervised manner.

A. Audio encoding

Let X(a)
i ∈ R(4+3)×F×Ta be the multichannel audio spec-

trogram of spatial recording i ∈ [1, I] obtained by stacking
the mel spectrograms of the four-channel audio signals of the
FOA format and the three intensity spectrograms on the or-
thogonal axes, where F is the number of mel frequency bins,
and Ta is the number of frames. A series of frame-wise audio
latent features denoted by Y

(a)
i ≜ {y(a)

it }
Ta
t=1 is obtained with

the audio feature extractor A as follows:

Y
(a)
i ← A

(
X

(a)
i

)
. (1)
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Fig. 2. The proposed DOA-wise and recording-wise DOA-aware contrastive learnings for pretraining the audio feature extractor.

A series of DOA- and frame-wise audio embeddings Z
(a)
i ≜

{z(a)ikt}
K,Tv

k=1,t=1 is then obtained with the projection head H:

{z(a)ikt}
K
k=1 ← H

(
y
(a)
it

)
, (2)

where the features y(a)
it at each frame t are independently trans-

formed for temporally localizing information, followed by an
adaptive average pooling to match the visual data of Tv frames.

B. Visual encoding

Let X(v)
i ≜ {x(v)

ikt}
K,Tv

k=1,t=1 be the series of DOA-wise local
images cropped from the 360◦ equirectangular visual data of
recording i ∈ [1, I], where x

(v)
ikt ∈ RH×W is a local image

that corresponds to DOA k ∈ [1,K] at time t ∈ [1, T ], H and
W are the height and width of each image (cropping size),
and Tv is the number of frames. Note that x

(v)
ikt is centered

on DOA k on the Gnomonic projection [18] of the original
spatial visual data. A series of DOA- and frame-wise visual
embeddings Z

(v)
i ≜ {z(v)ikt}

K,Tv

k=1,t=1 is obtained with the visual
encoder V as follows:

{z(v)ikt}
Tv
t=1 ← V

(
{x(v)

ikt}
Tv
t=1

)
, (3)

where the same visual encoding is independently applied to
each DOA k to obtain the embeddings that represent the
classes of visible sound objects.

C. Self-supervised learning (pretraining)

We describe the two variants of contrastive learning.
1) Similarity measures: Since the audio and visual data of

the same spatial recording usually have the DOA-wise corre-
spondence, we define the similarity between recordings i and
j for each DOA k as the cosine similarity as follows:

SDOA(Z
(a)
ik ,Z

(v)
jk ) =

1

Tv

Tv∑
t=1

z
(a)T
ikt z

(v)
jkt

∥z(a)ikt∥∥z
(v)
jkt∥

, (4)

where Z
(a)
ik ≜ {z(a)ikt}

Tv
t=1 and Z

(v)
ik ≜ {z(v)ikt}

Tv
t=1.

We here focus on the InfoNCE loss [19] defined as follows:

I (Z,Zp,Un) = −
exp (S(Z,Zp)/τ)∑

Zn∈Un
exp (S(Z,Zn)/τ)

, (5)

where Z is an anchor, Zp is a positive sample, Un is a set
of negative samples, and τ is a temperature hyperparameter.
Minimizing I encourages the similarity of Z to Zp to be larger
than to Un in a contrastive manner.

2) DOA-wise contrastive learning: The loss LDOA used in
this variant is calculated as follows:

LDOA =

I,K∑
i,k=1

I
(
Z

(a)
ik ,Z

(v)
ik , {Z

(v)
jk }

I
j=1 ∪ {Z

(v)
ik′ }Kk′=1

)
, (6)

where the similarity between the audio and visual embeddings
is maximized when they correspond to the same DOA.

3) Recording-wise contrastive learning: The loss LREC

used in this variant is calculated as follows:

LREC =

I∑
i=1

I
(
Z

(a)
i ,Z

(v)
i , {Z(v)

j }
I
j=1 ∪ {Z(v)

ri }
)
, (7)

where Z
(v)
ri is a series of visual embeddings that corresponds

to the visual data from the rotated recording ri, which is ob-
tained by rotating the spatial information of the recording i.
The recording-wise similarity used in LREC is obtained by av-
eraging the DOA-wise similarities over all the directions:

SREC(Z
(a)
i ,Z

(v)
j ) =

1

K

K∑
k=1

SDOA(Z
(a)
ik ,Z

(v)
jk ). (8)

D. Supervised learning (fine-tuning)

Using annotated data, the audio feature extractor A is fine-
tuned for SELD based on activity-coupled Cartesian DOA
representation (ACCDOA) [20]. Specifically, multiple sound
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events of the same class can be separately assigned to differ-
ent tracks. Let P̂ ∈ RT ′×C×N×3 be a multi-ACCDOA vector
of T ′ frames, C classes, N tracks given by

P̂← H′ (A (X)) , (9)

where X ∈ R(4+3)×F×T ′
a is the multichannel spectrogram

computed in the same way as X
(a)
i , where Ta is the number

of frames. The projection head H′ consists of several fully-
connected layers, followed by an adaptive average pooling to
suit the target time resolution T ′. Since the SELD label for
frame t, class c, and track n is given as a pair of the activity
a∗tcn ∈ {0, 1} and the Cartesian DOA vector Rtcn, the target
ACCDOA vector is given by

P∗
tcn = a∗tcnRtcn. (10)

The overall network is trained to minimize:

LPIT =
1

TC

T ′,C∑
t,c=1

min
α∈Perm(ct)

LACCDOA
α,tc , (11)

LACCDOA
α,tc =

1

N

N∑
n=1

MSE
(
P∗

α,tcn, P̂tcn

)
, (12)

where α ∈ Perm(t) is a possible frame-level permutation of
M tracks at the frame t and Perm(t) is a set of all possible
permutations. MSE(·, ·) is the mean square error function.

IV. EVALUATION

This section reports a comparative experiment conducted for
evaluating the proposed AV-SSL methods with the two variants
of contrastive learning.

A. Network configuration

The STFT spectrograms with a shifting interval of 480 sam-
ples and a window size of 1024 were converted to the mel
spectrograms with F = 64 mel bins. The number of DOAs K
was 220.

We used a ResNet-Conformer [12] for the audio feature ex-
tractor A as shown in Figs. 3 (a)–(c). The architecture of the
projection head H consisted of two linear+SiLU layers fol-
lowed a linear layer which output dimension was 220 × 128
as shown in Figs. 3 (d). The FOA audio data were resampled
at a sampling rate of 24 kHz and split into 2-second clips in
the training.

The visual encoder V consisted of 9-layer R(2 + 1)D con-
volution layers [21] as shown in Fig. 4. The input equirectan-
gular visual data were extracted at the time resolution Tv of
16 (8 Hz). The field of view ψ of visual crops for each di-
rection was 40◦, and the resolution H ×W was 16× 16. The
horizontal and vertical flipping was applied to the visual crops
as data augmentation.

Fig. 3. The architecture of the audio encoder.

Fig. 4. The architecture of the visual encoder.

B. Pretraining

We used the YT-360 dataset [7] for pretraining. It contains
VR contents collected from YouTube, each of which consists
of a synchronized pair of FOA audio data and equirectangular
visual data, including 246 hours of 10-second-long recordings
on diverse genres including music and sports. After remov-
ing recordings with some missing channels, 104 hours of the
training data and 20 hours of the validation data were used.

By the proposed AV-SSL methods, the ResNet-Conformer
was trained for 100 epochs using AdamW optimizer [22] with
a batch size of 4, a learning rate of 10−4, a weight decay
of 10−5. Rotated recordings for the negative sample were ob-
tained by randomly rotating the equirectangular visual data
around the z-axis. The temperature hyper-parameter τ was 0.1.
The SpecAugment [9] and the dropout with a rate of 0.1 were
used. The model having the lowest validation loss was used
for the downstream SELD task.

The conventional AV-SSL method called AVC [8] was
also evaluated as a baseline for comparison. Specifically, the
loss LAVC was calculated with the recording-wise similarity
H({z(a)it }

Tv
t=1, {z

(v)
it }

Tv
t=1), where z

(a)
it ∈ R128 was obtained by

max-pooling the DOA-wise visual embeddings {z(v)ikt}Kk=1 and
z
(a)
it ∈ R128 was directly obtained from the output layer H

with output dimension 128.
As in [7], curriculum learning was introduced for the pro-

posed methods, where two audio feature extractors A were
first trained with AVC for 50 epochs, then trained with the two
different proposed AV-SSLs for 50 epochs.

C. Fine-tuning

The SELD performance was evaluated on the STARSS22
and Synth1 datasets [5]. The STARSS22 is a dataset of actual
recorded FOA data annotated with the activations, classes, and

2080



TABLE I
CLASS-WISE ACTIVITIY IN THE STARSS22 DATASET [5].

Fem. Male Clap Phone Laugh Dom. Footsteps Door Music Music. Faucet Bell Knockspeech speech sounds instr.

Frame coverage 20.4 37.6 0.7 1.4 2.7 17.9 1.3 0.6 29.4 4.0 1.7 1.5 0.1(% total frames)

TABLE II
EVALUATION RESULT FOR THE TWO DATASETS.

Fine-tuning dataset Pretraining method ER≤20◦ ↓ F≤20◦ ↑ LE ↓ LR ↑ SELD ↓

STARSS22+Synth

None 0.53 48.9 % 18.2◦ 68.7 % 0.364

AVC[8] 0.52 49.7 % 17.9◦ 69.0 % 0.359

AV-SSL with DOA-wise contrastive learning 0.51 50.5 % 17.9◦ 70.1 % 0.351
AV-SSL with recording-wise contrastive learning 0.51 51.6 % 17.1◦ 69.0 % 0.349

STARSS22

None 0.65 37.9 % 22.1◦ 58.4 % 0.452

AVC[8] 0.63 37.7 % 22.4◦ 55.2 % 0.458

AV-SSL with DOA-wise contrastive learning 0.68 35.8 % 22.9◦ 53.7 % 0.478
AV-SSL with recording-wise contrastive learning 0.67 36.3 % 23.2◦ 56.3 % 0.467

TABLE III
CLASS-WISE INCREASE OR DECREASE OF THE THREE SELD METRICS BY EACH PRETRAINING.

Fine-tuning dataset Pretraining method ∆ Metrics Dom. Door Music Music. Bell Knocksounds instr.

STARSS22+Synth

AVC [8]
∆F≤20◦ +0.03 −0.02 −0.02 +0.02 +0.04 +0.01

∆(1− LE/180) +0.01 +0.01 −0.01 0.0 +0.00 −0.0
∆LR +0.02 −0.01 +0.05 +0.01 +0.08 −0.0

DOA-wise
∆F≤20◦ +0.05 +0.08 +0.02 −0.12 +0.11 −0.1

∆(1− LE/180) +0.0 +0.0 −0.01 −0.03 +0.02 −0.0
∆LR +0.07 +0.07 +0.09 −0.02 +0.01 −0.05

recording-wise
∆F≤20◦ +0.1 +0.06 −0.04 −0.01 +0.12 −0.03

∆(1− LE/180) +0.01 +0.01 −0.02 −0.0 +0.02 −0.0
∆LR +0.04 −0.01 +0.02 −0.0 +0.06 −0.0

STARSS22

AVC [8]
∆F≤20◦ −0.02 +0.09 +0.0 −0.05 −0.26 −0.18

∆(1− LE/180) −0.01 +0.01 +0.0 −0.01 −0.09 +0.01
∆LR +0.07 +0.07 −0.05 +0.06 −0.17 −0.38

DOA-wise
∆F≤20◦ −0.0 +0.04 +0.02 −0.14 −0.2 −0.07

∆(1− LE/180) −0.0 +0.0 −0.01 −0.05 −0.06 +0.02
∆LR +0.06 +0.07 −0.03 +0.06 −0.1 −0.31

recording-wise
∆F≤20◦ +0.03 +0.0 −0.0 −0.1 −0.16 −0.2

∆(1− LE/180) −0.0 +0.02 +0.02 −0.02 −0.05 −0.0
∆LR +0.05 +0.14 −0.14 −0.06 −0.09 −0.46

DOAs of 13 sound events every 0.1 seconds, where the class
labels follow the Audioset ontology [14]. This dataset con-
sists of 2.9 hours of training data and 2 hours of validation
data. Note that some classes have very low frame coverages
in STARSS22 as shown in Table I. The Synth1 is a dataset of
synthesized FOAs annotated in the same way as STARSS22,
obtained by remixing source signals from FSD50K [23] with
room RIRs from TAU-SRIR database [24]. Two datasets of
different sizes constructed from these datasets were used for
fine-tuning. The first one was a dataset made up of all training
data from STARSS22 and Synth1 (STARSS22+Synth1). The
second one consisted only of all training data from STARSS22
(STARSS22). A dataset that consists of all validation data from
STARSS22 and Synth1 was used as the validation dataset in

both conditions. The original FOA data were split every 5 sec-
onds, and they were sampled uniformly over all 13 classes to
deal with the class imbalance in STARSS22.

Each pretrained model was fine-tuned with a head H′ to
output 3-track multi-ACCDOAs [20]. The architecture of H′

was the same as the head H shown in the Sec. IV-A except that
the output dimension was changed to 13×3×3. AdamW with
a learning rate of 10−4 and a weight decay of 10−5 was used
for training. The models were trained for 1000 epochs. For
data augmentation, the input FOA was randomly rotated. The
dropout rate was 0.1 for ResNet-Conformer and 0.05 for H′.

Models pretrained with our methods were compared with
a non-pretrained model and a model pretrained with the con-
ventional AVC method based on SELD score [1] on the vali-
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dation dataset. The SELD score is obtained by averaging over
four metrics as follows:

SELD =
1

4

(
ER≤20◦ + (1− F≤20◦) +

LE

180
+ (1− LR)

)
,

where the smaller score indicates better performance. ER≤20◦

is the location-dependent error rate, where the prediction is
counted as a true positive only if the estimated class activity is
correct and the distance between the estimated and reference
DOAs is smaller than 20◦. F≤20◦ , LE and LR are the aver-
ages of class-wise metrics Fc,≤20◦ , LEc and LRc, respectively.
Fc,≤20◦ is the location-dependent F1-score for class c. LEc is
the average DOA estimation error over only the correctly de-
tected events of class c. LRc is the location-independent recall
for class c. LEc and LRc can be considered to be the perfor-
mance of detection and localization, respectively. The perfor-
mance of each model was measured by averaging the metrics
over the epochs with the first to tenth highest SELD scores.

D. Experimental results
Table II shows the overall SELD performances in terms of

the five metrics, i.e., ER≤20◦ , F≤20◦ , LE, LR, and SELD
score for each dataset and each pretraining method. In the
STARSS22+Synth1 dataset, both the AV-SSL with DOA-wise
contrastive learning and the AV-SSL with recording-wise con-
trastive learning improved the SELD scores by about 1.5 pts,
while the conventional AVC improved only about 0.5 pts. This
result indicates that our proposed approach is more suitable
for the pretraining of SELD than AVC.

Table III shows the performance gaps in the class-wise met-
rics, Fc,≤20◦ , LEc and LRc, between the non-pretrained model
and each pretrained model, where all the metrics were trans-
formed to the range of [0, 1] for readability, and only some of
the classes required for the following discussion were picked
up due to the page limitation. The proposed AV-SSLs degraded
the SELD scores more than AVC when only a few hours of im-
balanced data were used for training (STARSS22). This would
be partly due to the domain mismatch between YT-360 and
STARSS22 and the class imbalance of STARSS22. As for the
knock class, which was not included in the pretraining dataset
(YT-360), for example, the detection performance LRc got par-
ticularly worse. While in the classes related to home sounds
(e.g., domestic sounds and door), which frequently appear in
YT-360, the detection performance was improved.

Another reason for the degradation would be that a large
amount of background music data independent from the vi-
sual data are included in YT-360. Background music was con-
sidered to have a negative impact on the localization of sound
events related to music because it did not spatially correspond
to the paired visual data. In fact, the localization performance
LEc was significantly degraded by the pretraining for the mu-
sical instruments and bell classes.

V. CONCLUSION

We proposed two variants of pretraining an audio feature
extractor useful for SELD using spatial audio-visual record-

ings. To obtain the latent audio features representing not only
the classes but also the DOAs of sound events, the audio en-
coder takes the FOA data as input, and outputs the audio em-
beddings over the DOA grid. The transfer learning with a suf-
ficient amount of data showed the effectiveness of the pro-
posed AV-SSLs as pretraining for SELD. For future work, one
should deal with the deterioration in the SELD performance
when sufficient labeled data is unavailable. One of the promis-
ing approaches would be to prepare the dataset of spatial audio-
visual recordings covering various domains with good corre-
spondence between audio and visual data.

.
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