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Abstract
This paper proposes α-stable autoregressive fast multichannel
nonnegative matrix factorization (α-AR-FastMNMF), a robust
joint blind speech enhancement and dereverberation method
for improved automatic speech recognition in a realistic ad-
verse environment. The state-of-the-art versatile blind source
separation method called FastMNMF that assumes the short-
time Fourier transform (STFT) coefficients of a direct sound to
follow a circular complex Gaussian distribution with jointly-
diagonalizable full-rank spatial covariance matrices was ex-
tended to AR-FastMNMF with an autoregressive reverberation
model. Instead of the light-tailed Gaussian distribution, we use
the heavy-tailed α-stable distribution, which also has the re-
productive property useful for the additive source modeling, to
better deal with the large dynamic range of the direct sound.
The experimental results demonstrate that the proposed α-AR-
FastMNMF works well as a front-end of an automatic speech
recognition system. It outperforms α-AR-ILRMA, which is
a special case of α-AR-FastMNMF, and their Gaussian coun-
terparts, i.e., AR-FastMNMF and AR-ILRMA, in terms of the
speech signal quality metrics and word error rate.
Index Terms: speech enhancement, dereverberation, automatic
speech recognition, α-stable model, joint diagonalization

1. Introduction
The multichannel speech enhancement and dereverberation have
become crucial with the new technologies of automatic speech
recognition that aims to exploit the spatial correlation between
microphones [1]. Joint blind source separation (BSS) and dere-
verberation have been investigated actively because the good
adaptability to various acoustic environments is offered by its
unsupervised nature.

A popular approach to multichannel BSS is the combina-
tion of a full rank spatial covariance matrix (SCM) model and
a nonnegative matrix factorization (NMF) model on the power
spectrogram of each source signal, resulting in multichannel non-
negative matrix factorization (MNMF) [2]. Its computationally-
efficient constrained version called FastMNMF [3, 4] assumes
the source SCMs to be full-rank and jointly diagonalizable [5,6].
The well-known independent low-rank matrix analysis (ILRMA)
[7] is moreover a special case of FastMNMF with a degenerate
rank-1 source SCMs. FastMNMF was recently combined with
an autoregressive (AR) model by making use of the weighted pre-
diction error (WPE) [8] for joint BSS and dereverberation. This
combination called AR-FastMNMF [9] achieves better results
than its degenerate version called AR-ILRMA [10]. The local
Gaussian model (LGM) [11] on the short-time Fourier transform
(STFT) coefficients of each source signal, however, would be

Figure 1: Room impulse response (RIR) representation. The di-
rect sound can be seen as an outlier realization of all reflections.

insufficient to extract a direct sound in a noisy reverberant en-
vironment and naturally calls for models that deal with more
impulsive sounds.

Heavy-tailed extensions of MNMF [12–14], ILRMA [15],
and FastMNMF [16,17] have been proposed in the context of re-
verberant source image separation. Unlike the late reverberation,
the direct sound and early reflection tend to be outliers. In [18],
the room impulse response (RIR) and sources are statistically
represented as a heavy-tailed Student’s t distribution (Fig. 1).
However, the Student’s t law is usually not preserved under lin-
ear combination, whereas the sum of α-stable random vector
gives an α-stable random vector [19]; the α-stable distribution
satisfies the reproductive property (RP) [20]. Besides the RP,
the α-stable model has capability of adjusting the tail heaviness
with a characteristic exponent α∈(0, 2], including well-known
distributions such as Levy (α = 0.5), Cauchy (α = 1), and
Gaussian (α = 2) distributions as its special cases. The mul-
tichannel α-stable model is usually restricted to the so-called
elliptically-contoured α-stable distribution [13] that admits a
positive definite shape matrix akin to the covariance matrix of a
Gaussian distribution, yielding a robust extension to FastMNMF
called α-FastMNMF [17]. Even if the RP is satisfied, the prob-
ability density function (PDF) of an α-stable random vector is
usually not computable. Instead, the α-stable distribution can be
seen as a Gaussian one, where the covariance is perturbed by a
positive random variable called an impulse variable [21].

In this paper, we propose a robust and adaptive extension of
AR-FastMNMF called α-AR-FastMNMF based on the α-stable
model on the direct sound for joint BSS and dereverberation.
Our method enforces the sparsity of the direct sound represented
by the full-rank SCM model and satisfies the RP for the addi-
tive source model assumption. The sparsity is controlled by a
time-dependent impulse variable [13] intended to more precisely
identify the direct sound in a noisy reverberant mixture. Inspired
by [22], adaptive estimation of the characteristic exponent α is
furthermore proposed. In this context, the value of α also aims
to evaluate the impulsiveness of the direct sound in the noisy
reverberant observed signal.

The remainder of the paper is organized as follows: Section 2
reviews the conventional AR-FastMNMF. Section 3 describes the
proposed α-AR-FastMNMF and derives its parameter estimation
algorithm. Section 4 evaluates α-AR-FastMNMF in the context
of noisy and reverberant speech recognition. The conclusion is
finally drawn in Section 5.
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2. Autoregressive FastMNMF
This section reviews AR-FastMNMF [9] that integrates an au-
toregressive model into FastMNMF2 [4].

2.1. Mixture, Source, and Spatial Models

We suppose thatN sources are recorded byM microphones. Let
X , {xft}F,Tf,t=1 ∈ CF×T×M be the tensor of a multichannel
reverberant observed signal in the short-time Fourier transform
(STFT) domain for all time-frequency (TF) bins, where F is
the number of frequency bins and T is that of time frames. We
consider an autoregressive (AR) model that decomposes xft into
the direct sound dft and the reverberation rft as follows:

xft = dft + rft ,
N∑
n=1

dnft︸ ︷︷ ︸
direct sound

+

∆+L−1∑
l=∆

Bflxf,t−l︸ ︷︷ ︸
reverberation

, (1)

where Bfl , [bfl1, . . . ,bflM ]T ∈ CM×M are the coefficients
of the AR process of order L ≥ 0 called the tap length, ∆ ≥ 0
is the delay and T denotes the transposition. From the local
Gaussian model, the direct sounds {dnft}F,Tf,t=1 are assumed to
be independent circular complex Gaussian distributions [11]:

dnft ∼ NC

(
λnftGnf , Ynft

)
, (2)

where λnft ≥ 0 represents the power spectral density (PSD)
of the source snft and Gnf is the spatial covariance ma-
trix. The source PSDs {λnft}N,F,Tn,f,t=1 are represented by non-
negative matrix factorization (NMF) parameterized by W ,
{wnkf}N,K,Fn,k,f=1, H , {hnkt}N,K,Tn,k,t=1 as follows:

λnft =

K∑
k=1

wnkfhnkt, (3)

where K is the total number of NMF bases, wnfk ≥ 0 and
hnkt≥0 are the magnitude of basis k of source n at frequency
f and the activation of basis k of source n at time t, respectively.
Moreover, we consider that Gnf ’s are jointly-diagonalizable
full-rank spatial matrices with the decomposition:

∀n, f, Gnf = Q−1
f Diag(g̃n) Q−H

f , (4)

where Diag(g̃n) is a diagonal matrix whose diagonal elements
are g̃n , [g̃n1, . . . , g̃nM ] ∈ RM+ , Qf , [qf1, . . . ,qfM ]H ∈
CM×M is the diagonalizer assumed to be non-singular, and H

denotes the conjugate transpose. Using the reproductive property
(RP) of Gaussian distributions and combining Eqs. (2) and (4)
provide the following mixture model:

dft ∼ NC

(
Q−1
f

[
N∑
n=1

λnftDiag(g̃n)

]
Q−H
f , Yft

)
. (5)

Such a model with the AR filter is called AR-FastMNMF [9]
and includes AR-ILRMA [10] as a special case with G̃ ,
[g̃1, · · · , g̃N ]T equal to the identity, M = N and the column
vectors of Q−1

f acting like the column of the mixing matrix. The
column vectors of Q−1

f then serve as steering vectors pointing
in a set of M directions with a weight-shared scale given by the
entries of the nonnegative matrix G̃.

2.2. Parameter Estimation and Filtering Methods

The whole parameters Θ , {W,H, G̃,Q,B} with Q ,
{Qf}Ff=1 and B , {Bfl}F,Lf,l=1 are estimated jointly based on
the maximization of the log-likelihood (LL) log p(X|Θ), where
p is the probability density function (PDF) of a distribution. The
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Figure 2: PDFs of bivariate elliptically stable distributions for
α=1.6 (top-left) and α=2 (i.e., the Gaussian distribution; top-
right), and positive α-stable distributions for various α (bottom).

observations X and the estimated parameters Θ are then used to
apply a Wiener filtering that provides an estimator of the direct
sounds {dnft}F,Tf,t=1. The readers is referred to [4, 9] for further
implementation details.

3. Alpha-Stable Autoregressive FastMNMF
This section introduces the α-stable theory and the proposed
α-stable autoregressive FastMNMF (α-AR-FastMNMF).

3.1. α-stable Theory

A multivariate random vector u that can be decomposed as the
sum of two independent identically distributed (i.i.d) vectors
with the same law as u is called α-stable [19]. The characteristic
exponentα∈(0, 2] controls the heaviness of the tails with special
instances such as Levy (α=0.5), Cauchy (α=1), and Gaussian
(α= 2) distributions. Assuming the complex-valued isotropic
symmetric multivariate α-stable model [19], we have shown that
the underlying vectors can be recovered [23]. However, due to
incompatible representation, incorporating the computationally-
efficient joint diagonalization (as in FastMNMF) is not possible.

Instead, we use in this paper the complex-valued elliptically-
contoured symmetric multivariate α-stable distribution [12, 13],
shorted in elliptically stable distribution hereafter (Fig. 2), to
integrate the joint diagonalization. A zero-location elliptically
stable distribution u can be represented using a positive-definite
shape matrix R � 0 as in the Gaussian case:

u ∼ SαC (0,R) . (6)
The elliptically stable family holds the RP for a fixedα. However,
the shape matrix of the sum is not the sum of shape matrices
[24]. This non-linearity of shape matrices can be resolved by
representing an elliptically stable distribution as a Gaussian scale
mixture [25], where u is described as a conditional Gaussian
distribution u|φ∼NC (0, φR) whose covariance is perturbed
by a so-called impulse variable [21, 26] following a positive
α-stable distribution (Fig. 2) [19], φ ∼ PSα

(
2 cos(πα

4
)2/α

)
.

3.2. α-AR-FastMNMF Model and Filtering Method

The first impulse in a room impulse response (RIR, Fig. 1),
i.e., the direct sound, can be regarded as an outlier compare to
the rest consisting of early reflections and late reverberations.
Combined with the additive source model, it naturally calls for
an elliptically stable model, whose impulse variable can enforce
the sparseness of the direct sound compared to the reverberant
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observation in the time domain and thus, it can be assumed to
be source- and time-dependent. For each source n and TF-bin
(f, t), we consider the following conditional Gaussian model to
represent the elliptically stable model in Eq. (6):{

dnft | φnt ∼ NC (0, φntYnft) ,

φnt ∼ PSα
(

2 cos
(
πα
4

)2/α)
,

(7)

where Ynft is defined in Eq. (2). Because xft|Φ with Φ ,
{φnt}N,Tn,t=1 is also a conditional Gaussian model, we estimate
the direct sounds {dnft}F,Tf,t=1 using [9, 17]:

EΦ|X [E [dnft | Θ,Φ,xft, α]]

= EΦ|X

φntYnft

(
N∑

n′=1

φn′tYn′ft

)−1
dft. (8)

3.3. Parameter Estimation

We first describe the estimation of the characteristic exponent
α ∈ (0, 2] in Section 3.3.1. Sections 3.3.2 and 3.3.3 then for-
mulate the estimations of Θ and Φ, respectively, following the
expectation-maximization (EM) framework [27].

3.3.1. Estimation of α

We propose the estimation of α for the complex-valued multivari-
ate isotropic α-stable distribution by generalizing the method
for the real-valued counterpart proposed in [22] since all as-
sumptions still hold when all entries of X are assumed to be
i.i.d. with the same α. Given the mixture X, we create non-
overlapping segments consisting of T ′ frames (T ′ ≤ T ) and
consider each segment as a set B , {xft}F,T

′

f,t=1 , {xb}FT
′

b=1 ,
in which the shape matrices Rft are assumed to be i.i.d. We
randomly split the set into B2 minibatches of B1 samples with
|B| = B1B2 = FT ′ being the total number of samples. The
valuesB1 andB2 are arbitrary as long as 1<B1<B2 [22]. The
estimated α for set B, denoted by α̂B , can be computed as

1

α̂B
,

1

logB1

 1

B2

B2∑
b′=1

log ‖ξb′‖−
1

|B|

|B|∑
b=1

log ‖xb‖

 , (9)

where ξb′ ,
∑B1
b′′=1 xb′′+(b′−1)B1

and ‖.‖ the Frobenius norm.
Assuming that α is the same for the whole mixture, we then
obtain α̂ by averaging all α̂B from the different segments.

3.3.2. Estimation of Θ

We maximize the discretization of the LL function
log p (X|Θ, α)=log

∫
p(X|Θ,φ, α)p(φ)dφ [9, 17]:

log p(X|Θ) ≥ − 1

P

F,T,M∑
f,t,m=1

P∑
p=1

(
d̃ftm
ỹftmp

+ log ỹftmp

)

+ T

F∑
f=1

log
∣∣∣QfQ

H
f

∣∣∣−KL[q(φnt)‖p(φnt)], (10)

where P is the number of samples, KL is the Kullback-Leibler
divergence, q(φ) a variational distribution that satisfies the
equality in (10) for all n, t if q(φnt) = p (φnt|X), d̃ftm ,
|qH
fmdft|2 and ỹftmp =

∑N,K
n,k=1 φ̃ntpwnkfhnktg̃nm, where

φ̃ntp∼p (φnt|X). The multiplicative updates rules for W, H,

G̃ are given by [9, 17]:

wnkf ← wnkf

√√√√∑T,M,P
t,m,p=1 φ̃ntphnktg̃nmd̃ftmỹ

−2
ftmp∑T,M,P

t,m,p=1 φ̃ntphnktg̃nmỹ
−1
ftmp

, (11)

hnkt ← hnkt

√√√√∑F,M,P
f,m,p=1 φ̃ntpwnkf g̃nmd̃ftmỹ

−2
ftmp∑F,M,P

f,m,p=1 φ̃ntpwnkf g̃nmỹ
−1
ftmp

, (12)

g̃nm ← g̃nm

√√√√∑F,T,K,P
f,t,k,p=1 φ̃ntpwnkfhnktd̃ftmỹ

−2
ftmp∑F,T,K,P

f,t,k,p=1 φ̃ntpwnkfhnktỹ
−1
ftmp

. (13)

The vectors qfm of Q are updated as in [28] given the matrix
Vfm, 1

TP

∑T,P
t,p=1 dftd

H
ftỹ
−1
ftmp as follows:

qfm ← (QfVfm)−1em, (14)

qfm ← (qH
fmVfmqfm)−

1
2 qfm. (15)

The updating rules for B are similar to the ones in [9, 29] :

Ψf ,
M∑
m=1

qfm ⊗

(
1

P

T,P∑
t,p=1

xH
ftqfm

ỹftmp
x̄ft

)∗
, (16)

Ωf ,
M∑
m=1

(qfmqH
fm)⊗

(
1

P

T,P∑
t,p=1

x̄ftx̄
H
ft

ỹftmp

)T

, (17)

b̂f = Ω−1
f Ψf , (18)

where ∗ stands for the complex conjugate, ⊗ stands for the
Kronecker product and

b̂f , [bT
f :1, . . . ,b

T
f :M ]T ∈ CM

2L, (19)

bf :m , [bT
f,∆,m, . . . ,b

T
f,∆+L−1,m]T ∈ CML, (20)

x̄ft , [xT
f,t−∆, . . . ,x

T
f,t−(∆+L−1)]

T ∈ CML. (21)

3.3.3. Estimation of Φ

Since Φ is not tractable because p (φnt|X) does not admit a
closed-form, we approximate the PDF by iteratively drawing
samples using the Metropolis-Hastings (MH) algorithm [13]:

1. Draw samples from φnew
nt,f ∼ PSα

(
2 cos

(
πα
4

)2/α).

2. Sample ν ∼ U ([0, 1]) from the uniform distribution.

3. Compute the acceptance probability for all f :

acc
(
φold
nt,f→φnew

nt,f

)
= min

1,
unft

(
φnew
nt,f

)
unft

(
φold
nt,f

)
 , (22)

where unft (φnt,f ) is the PDF of a zero-mean Gaus-
sian distribution whose covariance matrix is given by
φnt,fλnftDiag (g̃n) +

∑
n′ 6=n φn′t,fλn′ftDiag (g̃n′).

4. Acceptance test:

• if ν<acc
(
φold
nt,f→φnew

nt,f

)
, φnt,f =φnew

nt,f (accept);

• otherwise, φnt,f =φold
nt,f (reject).

5. Average by computing φ̃ntp , 1
F

∑F
f=1 φnt,f .

4. Evaluation
We assess the performance of the proposed α-AR-FastMNMF
and α-AR-ILRMA in the context of speech enhancement and
dereverberation for automatic speech recognition (ASR). The
enhanced speech signal is evaluated in terms of the signal-to-
distortion ratio (SDR) [30] and the perceptual evaluation speech
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Table 1: Average SDR/PESQ/WER scores for experiments described in Section 4. Boldface numbers show the best performance.

Dist. SNR M L
α-AR-FastMNMF variants α-AR-ILRMA variants

Unprocessed
α∈(0, 2] α=2 α∈(0, 2] α=2

Near

0 dB
2 0 5.4 /1.6 /49.1 4.8 /1.6 /50.4 2.5 /1.6 /51.1 2.6 / 1.5 / 49.2

−0.3 /1.4 /68.04 7.0 /1.6 /34.4 6.2 /1.6 /35.5 3.9 /1.6 /36.0 4.2 /1.6 / 36.4

8 0 12.1 /2.3 / 12.2 11.3 / 2.1 /13.3 8.9 / 1.9 /11.3 8.8 / 2.0 /10.2
4 13.7 /2.4 / 8.6 12.8 / 2.2 / 9.7 10.9 / 2.0 / 8.9 10.8 / 2.0 / 9.6

5 dB
2 0 9.3 /1.8 /11.1 8.9 /1.8 /12.9 7.1 /1.8 /13.4 7.2 /1.8 / 14.8

4.1 /1.5 /65.94 10.9 /1.9 /10.2 10.2 /1.9 /11.7 8.6 / 1.8 /11.4 8.6 / 1.8 / 11.1

8 0 13.9 /2.6 / 7.2 13.2 /2.6 / 8.1 11.9 / 2.3 / 4.9 12.2 / 2.3 / 5.3
4 16.2 /2.7 / 4.0 15.1 / 2.6 / 5.8 14.2 / 2.4 / 4.4 14.0 / 2.4 / 4.7

Far

0 dB
2 0 2.7 /1.4 /44.3 1.8 /1.4 /45.7 0.5 /1.4 /45.9 0.7 /1.4 / 47.9

−1.3 /1.3 /68.44 5.1 /1.5 /40.4 4.2 /1.5 /42.4 2.3 /1.5 /41.3 2.4 /1.5 / 42.3

8 0 7.7 /1.7 /19.6 7.1 /1.7 /21.0 5.1 /1.7 /22.7 5.5 /1.7 / 24.1
4 10.8 /1.9 /12.2 10.0 /1.9 /16.0 8.4 / 1.8 /15.3 8.6 / 1.8 / 14.2

5 dB
2 0 5.4 /1.6 / 27.4 4.8 /1.6 /27.9 4.1 /1.6 /28.3 4.1 /1.6 /26.3

2.1 /1.5 /66.54 8.1 /1.7 /19.4 7.6 / 1.6 /21.2 6.2 / 1.6 /20.1 6.3 / 1.6 / 19.7

8 0 9.7 /2.0 / 8.6 9.0 /2.0 / 9.3 7.6 / 1.9 / 8.0 8.0 / 1.9 / 8.3
4 13.4 /2.2 / 4.9 12.5 /2.2 / 7.6 11.9 / 2.0 / 6.5 11.7 / 2.0 / 6.8

quality (PESQ) [31], while the speech transcription is evaluated
in terms of word error rate (WER). A higher score is better for
SDR and PESQ; a lower score is better for WER. The methods
discussed in this paper act as a frontend of a transformer-based
ASR [32], as implemented in SpeechBrain [33].

4.1. Data and Settings

We consider 20 utterances from the REVERB challenge dataset
[34] composed of 8-channel mixtures (M=8) sampled at 16kHz
with a distance of 2.0 m (far) or 0.5 m (near) between the center
of microphone array and the speaker. The reverberant time
(RT60) is either 0.25, 0.5, or 0.7 s, while the signal-to-noise
ratio is either 0 or 5 dB. The STFT coefficients are computed
using a 1024-point Hann window with 75% overlap (F = 513
frequency bins).

The compared methods include α-AR-FastMNMF, α-AR-
ILRMA, and their Gaussian variants (α = 2) [4, 10]. Those
AR variants use a tap length L = 4 and a delay ∆ = 3. We
also consider the corresponding non-AR variants [4, 7, 17] by
setting L = 0. For all methods, the number of NMF bases is
K=16 and that of microphones is either M=2 or M=8. For
a fair comparison, we only perform the determined separation
(N=M ), where the channel with the highest energy is selected
as the enhanced speech signal afterwards. All methods initialize
Θ using AR-FastMNMF run for 50 iterations, and then perform
parameter optimization for 150 iterations. The parameters α of
the α-stable variants are estimated using segments with T ′=100
(see Section 3.3.1) and MH sampling for 40 iterations, including
a burning period of 30 iterations, so P =10.

4.2. Results and Discussion

Fig. 3 illustrates spectrograms obtained by α-AR-FastMNMF
with different α, where αopt is estimated using the proposed
method in Section 3.3.1. For α = 1.5, we can see that some
harmonics of the phoneme are vanished while the Gaussian
case (α = 2) is noisier on the silent part than αopt. Table 1
shows that α-AR-FastMNMF achieves the best SDR, PESQ,
and WER scores for almost all settings. For non-AR methods
(L= 0), ILRMA achieves the best WER scores in some cases.
If we compare the ILRMA variants for L∈{0, 4}, the α-stable
version tends to achieve similar results as Gaussian ILRMA.
ILRMA and FastMNMF gap scores between α and Gaussian
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Figure 3: Spectrograms of the clean speech reference
c30c0201, the observed signal (SNR=5 dB, RT60=0.5 s, far),
and the enhanced speech obtained by α-AR-FastMNMF (M=8,
K=16) with different α.

extensions shed the light on the necessity to consider a full-rank
model for the α-stable version.

In summary, we first pointed out that the estimated value
α by the method of Section 3.3.1 is essential to have a good
reconstruction of the speech spectrograms. We demonstrate that
the combination of α-stable model with an autoregressive FastM-
NMF model significantly improves the performances of speech
enhancement, dereverberation and ASR. The results of ILRMA
methods also show that a full-rank SCM model is relevant for
the α-stable variants to outperform their Gaussian counterpart.

5. Conclusion
This paper described a probabilistic integration of an autoregres-
sive model with the FastMNMF framework, where the original
elliptically-contoured complex Gaussian model is replaced by an
α-stable one to form the proposed α-AR-FastMNMF. By doing
so, we enforce the sparsity between the direct sound and the
reverberant component using the impulse variable induced by
the elliptically-contoured α-stable model. The proposed method
achieves promising results in terms of source separation and
speech recognition scores. Future directions may include char-
acteristic exponent α depending on time or replacing the NMF
decomposition of the speech by a heavy-tailed deep speech prior
model on the spectrograms as in [14].
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[12] M. Fontaine, F.-R. Stöter, A. Liutkus, U. Şimşekli, R. Serizel, and
R. Badeau, “Multichannel audio modeling with elliptically stable
tensor decomposition,” in Proc. Int. Conf. Latent Variable Anal.
Signal Separation, 2018, pp. 13–23.
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