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Abstract
This paper describes multichannel speech enhancement based
on a probabilistic model of complex source spectrograms for
improving the intelligibility of speech corrupted by undesired
noise. The univariate complex Gaussian model with the repro-
ductive property supports the additivity of source complex spec-
trograms and forms the theoretical basis of nonnegative matrix
factorization (NMF). Multichannel NMF (MNMF) is an exten-
sion of NMF based on the multivariate complex Gaussian model
with spatial covariance matrices (SCMs), and its state-of-the-
art variant called FastMNMF with jointly-diagonalizable SCMs
achieves faster decomposition based on the univariate Gaus-
sian model in the transformed domain where all time-frequency-
channel elements are independent. Although a heavy-tailed ex-
tension of FastMNMF has been proposed to improve the ro-
bustness against impulsive noise, the source additivity has never
been considered. The multivariate α-stable distribution does not
have the reproductive property for the shape matrix parameter.
This paper, therefore, proposes a heavy-tailed extension called
α-stable FastMNMF which works in the transformed domain to
use a univariate complex α-stable model, satisfying the repro-
ductive property for any tail lightness parameter α and allow-
ing the α-fractional Wiener filtering based on the element-wise
source additivity. The experimental results show that α-stable
FastMNMF with α = 1.8 significantly outperforms Gaussian
FastMNMF (α=2).
Index Terms: speech enhancement, nonnegative matrix factor-
ization, α-stable distribution, joint diagonalization

1. Introduction
Multichannel speech enhancement aims to reduce the noise from
corrupted speech signals captured by multiple sensors. It is an
essential part of modern automatic speech recognition systems
and hearing aids [1, 2]. Those applications require a flexible and
tractable model to handle scenarios ranging from easy (anechoic,
noiseless) to complex (strongly reverberant, highly noisy with
impulsive noises).

A common approach is to consider in the short-time Fourier
transform (STFT) domain a probabilistic model for all time-
frequency (TF) bins of the sources. It is then convenient to as-
sume that the observation is a linear combination of audio com-
ponents and that all TF bins and sources are independent. Many
works, for instance, assume a local Gaussian model that satisfies
the linear stability condition (the reproductive property). The co-
variance matrix of each TF bin is then usually decomposed into
a full-rank positive semidefinite matrix called a spatial covari-
ance matrix (SCM) and a positive scalar representing the power
spectral density (PSD) of the signal [3]. The direct estimation of
those parameters, however, often results in a sub-optimal perfor-
mance because it is hard to obtain accurate estimates.

The multichannel nonnegative matrix factorization (MNMF)
is a well-known technique that decomposes the PSDs into sepa-
rate frequency-dependent and time-dependent matrices [4]. This
low-rank representation is effective to reduce the degree of free-
dom of the model and to improve the speech enhancement per-
formance. Several extensions have been proposed to further
improve both computation cost and enhancement performance.
While independent low-rank matrix analysis (ILRMA) [5] pro-
poses a fast and effective technique for a determined case, a re-
cent approach called FastMNMF [6, 7, 8] uses a joint diagonal-
ization technique to reduce the algorithm complexity. A heavy-
tailed extension of FastMNMF based on a Student’s t model is
described in [9]. The Student’s t model achieves good results
for a more complex scenario of audio source separation. How-
ever, neither the Student’s t model [9, 10] nor the generalized
Gaussian model [11] has the reproductive property.

The multivariate α-stable distribution, where α ∈ (0, 2] is
referred to as characteristic exponent, is the family of distribu-
tions satisfying the reproductive property [12]. A distribution
with a smaller α has heavier tails and includes as a special case
the Gaussian (α = 2), Cauchy (α = 1), and Levy (α = 0.5)
distributions. In speech enhancement, α has been used to char-
acterize the impulsiveness of noise [13, 14]. The parameter esti-
mation for a multivariate α-stable model can be summarized in
three major approaches. The first approach is to use a maximum
likelihood technique as in [15], where a projected Cauchy multi-
variate distribution is used as a proxy. However, not all values
of α have a closed-form probability density function (pdf.). The
second approach circumvents this issue by using a unique spatial
representation of parameter satisfying the reproductive property
for non-Gaussian symmetric α-stable vectors [16]. The third ap-
proach is to consider a sub-family called elliptically-contoured
symmetric multivariate complex α-stable distribution [17, 18],
simply referred to as elliptically stable distribution hereafter, that
can be seen as a Gaussian model given some positive α-stable
random variable, known as the impulse variable in speech en-
hancement literature [13, 14, 19].

This paper proposes a possibly (α < 2) heavy-tailed ellipti-
cally stable source model and its convergence-guaranteed param-
eter estimation, which exploits its equivalent conditional Gaus-
sian model in [18] and the joint-diagonalization technique of
FastMNMF in [6, 7] applied to the shape matrix parameters to
satisfy the reproductive property in the transformed domain. We
first review the state-of-the-art Gaussian FastMNMF [6, 7] in
Section 2. We then describe the proposed α-stable FastMNMF
in Section 3 and the estimation of its parameters in Section 4.
We present speech enhancement experiments on subsets of the
CHiME-4 dataset [20] in Section 5 to compare the performance
of α-stable FastMNMF to that of Gaussian FastMNMF [6], and
ILRMA [5]. We finally draw a conclusion in Section 6.
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2. Gaussian FastMNMF
This section introduces the state-of-the-art blind source separa-
tion (BSS) method called FastMNMF, which is based on the
complex Gaussian likelihood [6].

2.1. Model Formulation

Suppose that a mixture of N sources are recorded by M micro-
phones. Let X = {xft}F,Tf,t=1 ∈ CF×T×M be the observed mul-
tichannel mixture complex spectrogram, where F and T denote
the number of frequency bins and time frames, respectively. Let
Sn = {snft}F,Tf,t=1 ∈ CF×T be the single-channel source com-
plex spectrogram and Xn = {xnft}F,Tf,t=1 ∈ CF×T×M be its
image. Assuming the additivity of spectra, xft ∈ CM is given
by

xft =

N∑
n=1

xnft (1)

and given X as observed data, the goal of BSS is to estimate the
latent source images {Xn}Nn=1.

2.1.1. Source Model

The source model represents a probabilistic generative process
of the source spectrogram Sn, where snft is assumed to follow
a univariate complex Gaussian distribution as follows:

snft ∼ NC (0, λnft) , (2)

where λnft represents the PSD of source n at frequency f and
time t. In the low-rank source model based on NMF, the source
PSDs are assumed to have low-rank structure as follows:

λnft =

K∑
k=1

wnkfhnkt, (3)

where K is the number of bases, wnkf ≥ 0 is the magnitude
of basis k of source n at frequency f , and hnkt ≥ 0 is the
activation of basis k of source n at time t.

2.1.2. Spatial Model

The spatial model represents a probabilistic generative model of
the source image Xn. If the sound propagation process (room
acoustics) is time-invariant, we have

xnft = anfsnft, (4)

where anf ∈ CM is the steering vector of source n at frequency
f . Using Eqs. (2) and (4), we have

xnft ∼ NC(0, λnftGnf ) , NC(0,Ynft) , (5)

where , means ”equals by definition”, Gnf = anfa
H
nf ∈

SM+ is the rank-1 SCM of source n at frequency f with .H the
Hermitian transposition and SM+ indicates the set of positive
semidefinite matrices of size M . This is called the rank-1 spatial
model used in ILRMA [5]. In the full-rank spatial model of
MNMF, in contrast, the rank-1 constraint is removed for dealing
with more realistic echoic conditions, i.e., Gnf is regarded as
a full-rank matrix. Using Eqs. (1) and (5) and the reproductive
property of the Gaussian distribution, we have

xft ∼ NC

(
0,

N∑
n=1

λnftGnf

)
, NC(0,Yft) . (6)
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Figure 1: Pdf. of symmetric and positive α-stable distributions
in the real scalar case

In FastMNMF, a constrained version of MNMF, the SCMs of
N sources {Gnf}Nn=1 are assumed to be jointly diagonalizable
as follows:

∀n, Gnf = Q−1
f Diag(g̃n)Q

−H
f , (7)

where g̃n = [g̃n1, . . . , g̃nM ]> ∈ RM+ is a nonnegative vec-
tor with .> denoting the transposition, Diag(·) returns a diag-
onal matrix, and Qf = [qf1, . . . ,qfM ]H ∈ CM×M is a non-
singular matrix called a diagonalizer, which is not limited to a
unitary matrix. Using Eq. (7) into Eq. (6), we have

Qfxft ∼ NC

(
0,

N∑
n=1

λnftDiag(g̃n)

)
. (8)

This means that the elements of Qfxft are all independent
because they follow a multivariate complex Gaussian distribution
with a diagonal covariance matrix. This makes FastMNMF
much more computationally efficient than MNMF because the
factorization of Qfxft can be performed faster than that of xft
with inter-element correlation.

2.2. Parameter Estimation

The parameters W = {wnkf}N,K,Fn,k,f=1, H = {hnkt}N,K,Tn,k,t=1,
G̃ = {g̃n}Nn=1, and Q = {Qf}Ff=1 are estimated jointly such
that the log-likelihood function log p(X | Θ) is maximized
where Θ = {Q, G̃,W,H}. Given parameters Θ, the source
image xnft are then estimated with a Wiener filtering. We refer
to [6] for further details.

3. α-Stable FastMNMF
This section briefly introduces the elliptically stable distribution
and presents the proposed model called α-stable FastMNMF.

3.1. Univariate and Multivariate α-Stable Distributions

Suppose that a random variable x follows an univariate symmet-
ric isotropic zero-location α-stable distribution x ∼ SαC (0, v),
where v ≥ 0 is the scale parameter akin to the variance of a
Gaussian distribution (α = 2). The characteristic exponent
α ∈ (0, 2] controls the heaviness of the distribution tails: the
smaller α is, the heavier the tails are (cf. Figure 1). It has the
reproductive property [12] and can also be expressed as a Gaus-
sian scale mixture [21], e.g., x ∼ SαC (0, v) equals in distribution
to x | φ ∼ NC (0, φv), where φ ∼ PSα

(
2 cos

(
πα
4

)2/α) has
a positive α-stable distribution [12].

The multivariate α-stable distribution includes a sub-family
called elliptically-contoured symmetric multivariate complex α-
stable distribution [17, 18], referred to as elliptically stable dis-
tribution hereafter, which is a subset of Gaussian scale mixture.
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A zero-location elliptically stable distribution parameterized by
a shape matrix V ∈ SM+ [17]:

x ∼ SαC (0,V) (9)

can be expressed as x |φ∼NC (0, φV). The elliptically stable
distribution can then be seen as a Gaussian distribution whose co-
variance V is randomly perturbed by a positive scalar φ, whose
value may be very large (cf. Figure 1). The so-called impulse
variable φ [13] can then be used to characterize the impulsive-
ness of speech and noise. The elliptically stable distribution has
the reproductive property according to the spatial representation
theorem [12, 16] but the linearity of shape matrix representation
does not coincide. We then exploit the conditional Gaussian dis-
tribution x | φ in developing the α-stable FastMNMF.

3.2. Model Formulation

We assume that a source image follows a zero-location elliptical
stable distribution xnft ∼ SαC (0, λnftQ−1

f Diag(g̃n)Q
−H
f ),

where the characteristic exponent α ∈ (0, 2) , λnft is the source
PSD and g̃n is the diagonal elements of the diagonalized spatial
shape matrix. As a surrogate of the elliptical stable distribution,
we consider the conditional Gaussian model:xnft | φnft ∼ NC

(
0,Q−1

f Diag (ỹnft)Q−H
f

)
φnft ∼ PSα

(
2 cos

(
πα
4

)2/α) (10)

where Diag (ỹnft) , φnftλnftDiag (g̃n). Since Eq. (10)
implies that

∑
n xnft | φnft is also Gaussian, we can then

formulate a marginalized Wiener filter given φ = {φnft}nft,
Diag (ỹft) ,

∑
nDiag (ỹnft) and Eφ|X simplified as Eφ:

Eφ [E [xnft |Θ,φ,xft]]

= Eφ

[
Q−1
f Diag (ỹnft)Diag (ỹft)

−1 Q−H
f

]
xft. (11)

If we assume that all components of Qfxnft are independent for
all n, f, t, then the reproductive property holds and the filtering
method in Eq. (11) can be replaced by an α-fractional Wiener
filter [22] applied element-wise on vector Qfxnft. To sum up,
in addition to Θ={Q, G̃,W,H} as in Gaussian FastMNMF,
the proposed α-stable FastMNMF is also parameterized by φ.

4. Parameter Estimation
This section presents the parameter estimation of α-stable
FastMNMF. We first explain the estimation of Θ by using an
Expectation-Maximization (EM) technique and iterative projec-
tion method similar to the one explained in [6]. We then describe
the estimation of φ by a Metropolis-Hastings (MH) algorithm.

4.1. Estimation of Θ

In estimating Θ, we assume that X and φ are known.
We consider the probabilistic model described in Sec-
tion 3.2 with NMF in Eq. (3) for modeling the source PSD
{λnft}N,F,Tn,f,t=1. We minimize the log-likelihood log p(X|Θ) =

log
∫
p(X|Θ,φ)p(φ)dφ as follow:

log p(X|Θ) ≥ − 1

L

F,T,M∑
f,t,m=1

L∑
l=1

(
x̃ftm
ỹftml

+ log ỹftml

)

+ T

F∑
f=1

log
∣∣∣QfQ

H
f

∣∣∣−KL[q(φ)‖p(φ)] (12)

where L is the number of samples φ for averaging the inte-
gral, x̃ftm = |qH

fmxft|2, ỹftml =
∑
n,k φnftlwnkfhnktg̃nm,

φnftl ∼ q(φnft), and KL is the Kullback-Leibler divergence.
The multiplicative update rules are given by:

wnkf ← wnkf

√√√√∑T,M,L
t,m,l=1 φnftlhnktg̃nmx̃ftmỹ

−2
ftml∑T,M,L

t,m,l=1 φnftlhnktg̃nmỹ
−1
ftml

, (13)

hnkt ← hnkt

√√√√∑F,M,L
f,m,l=1 φnftlwnkf g̃nmx̃ftmỹ

−2
ftml∑F,M,L

f,m,l=1 φnftlwnkf g̃nmỹ
−1
ftml

, (14)

g̃nm ← g̃nm

√√√√∑F,T,K,L
f,t,k,l=1 φnftlwnkfhnktx̃ftmỹ

−2
ftml∑F,T,K,L

f,t,k,l=1 φnftlwnkfhnktỹ
−1
ftml

. (15)

The vectors qfm are updated as in [23] by applying the
following update with Vfm , 1

TL

∑T,L
t,l=1 Xftỹ

−1
ftml:

qfm ← (QfVfm)−1em; (16)

qfm ← (qH
fmVfmqfm)−

1
2 qfm, (17)

where em is a one-hot vector where mth component is equal to 1
and qfm is the mth column of the matrix Qf .

4.2. Estimation of φ

A direct estimation of φ is untractable because it generally does
not have an analytical expression for the pdf. We can, however,
do approximation by obtaining multiple samples of φ via a
Metropolis-Hastings algorithm with Gibbs sampling [18]:

1. Draw a random sample from the prior disribution φnew
nft ∼

PSα
(
2 cos

(
πα
4

)2/α).

2. Draw ν ∼ U ([0, 1]) where U is the uniform distribution.

3. Compute the following acceptance probability:

acc
(
φold
nft → φnew

nft

)
= min

1,
unft

(
φnew
nft

)
unft

(
φold
nft

)
 (18)

where unft (φnft) is the pdf. of a zero-mean Gaussian dis-
tribution whose covariance matrix φnftλnftDiag (g̃n) +∑
n′ 6=n φn′ftλn′ftDiag (g̃n′) evaluated on xft.

4. Test the acceptance:

• if ν<acc
(
φold
nft → φnew

nft

)
, then φnft=φnew

nft (acceptance)

• otherwise, φnft=φold
nft (rejection).

The Gaussian-FastMNMF complexity algorithm for one EM iter-
ation isO

(
FM2 +NM

)
and becomeO

(
L
(
FM2 +NM

))
for α−FastMNMF.

5. Evaluation
This section evaluates the speech enhancement performance of
the proposed α-stable FastMNMF model and compares it to that
of the state-of-the-art Gaussian FastMNMF and ILRMA.

5.1. Experimental Settings

We performed M -channel speech enhancement tasks (N = 2,
i.e., speech and noise) with M ∈ {2, 5} on simulated and real
data subsets of the CHiME-4 dataset [20]. Each subset consists
of 20 randomly selected utterances for each of four different
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(a) Mean SDRs along the update iterations for
M=2 and K=16 on the real data subset.

(b) Boxplots of SDRs on the simulated (left) and real (right) data subsets with M=5 for various
values of α and K. White squares show the mean SDRs.

Figure 2: SDR comparison for the different algorithms. ‘FastMNMF‘ refers to the Gaussian FastMNMF.

Table 1: STOI and PESQ comparison for the different algorithms. STOI score ranges from 0 to 1 and PESQ score ranges from −0.5 to
4.5. Bold text indicates the best performance for each test set taking into account both mean and standard deviation.

K=16, STOI α = 1.2 α = 1.4 α = 1.6 α = 1.8 FastMNMF ILRMA

M = 2
Simu 0.87 ±0.06 0.88 ±0.06 0.89 ±0.05 0.89 ±0.05 0.88 ±0.06 0.87 ±0.06
Real 0.74 ±0.11 0.75 ±0.10 0.75 ±0.10 0.76 ±0.10 0.75 ±0.10 0.75 ±0.10

M = 5
Simu 0.92 ±0.05 0.93 ±0.04 0.94 ±0.04 0.94 ±0.07 0.92 ±0.03 —
Real 0.75 ±0.09 0.76 ±0.09 0.77 ±0.09 0.78 ±0.09 0.77 ±0.09 —

K=16, PESQ α = 1.2 α = 1.4 α = 1.6 α = 1.8 FastMNMF ILRMA

M = 2
Simu 2.11 ±0.44 2.14 ±0.46 2.15 ±0.43 2.15 ±0.40 2.12 ±0.47 2.03 ±0.47
Real 2.12 ±0.43 2.15 ±0.40 2.16 ±0.47 2.18 ±0.41 2.14 ±0.44 2.19 ±0.43

M = 5
Simu 2.42 ±0.58 2.49 ±0.51 2.51 ±0.47 2.54 ±0.48 2.48 ±0.50 —
Real 2.27 ±0.52 2.3 ±0.56 2.32 ±0.50 2.33 ±0.43 2.29 ±0.51 —

environments (bus, cafe, pedestrian area, and street junction),
amounting to 80 utterances in total. The performance is eval-
uated in terms of the signal to distortion ratio (SDR) [24], the
perceptual evaluation speech quality (PESQ) [25], and the short-
time objective measure (STOI) [26].

We compare the performance of the proposed α-stable
FastMNMF to that of the state-of-the-art Gaussian FastMNMF
[7] and ILRMA [5]. The NMF coefficients W,H whose num-
ber of bases varies K∈{4, 8, 16, 32} are initialized with the ab-
solute values of random samples from a Gaussian distribution.
The demixing matrix for each frequency bin in ILRMA is ini-
tialized as an identity matrix. For both Gaussian and α-stable
FastMNMFs, the column vectors qfm are initialized with the
eigenvectors of the matrix T−1∑

t E[xftx
H
ft] and the diagonals

of speech and noise SCMs are initialized as [1, ε, . . . , ε]> and
[M−1, . . . ,M−1]>, respectively, where ε= 10−2. For the α-
stable FastMNMF, the same exponent α is used for both speech
and noise with α∈{1.2, 1.4, 1.6, 1.8} and the number of MH
iterations is set to L=5. All algorithms run for 100 iterations.

5.2. Experimental Results & Discussions

Figure 2a illustrates the SDR evolution on the real data along
the parameter update iterations for M = 2 and K = 16. With
sufficient parameter updates, all FastMNMF variants outperform
ILRMA and with appropriate setting of α, the proposed α-stable
FastMNMFs outperform the Gaussian counterpart. We observe
that α = 1.8 is optimal among our settings. Conversely, we
notice that the performance of α = 1.2 is poor and relatively
unstable, due to the fact that for a smaller α, the impulse variable
φ has a wider range of values.

Figure 2b shows the SDR comparison on both simulated and
real data for M =5 and various K after 100 update iterations.
We observe that α = 1.8 provides the best performance. For

α∈{1.2, 1.4}, the performance is improving along the increase
of K. For α∈{1.6, 1.8}, conversely, K=16 is the optimal one.

Table 1 presents the PESQ and STOI comparison for M ∈
{2, 5}. Note that ILRMA only works for the determined case
(M = 2, N = 2). In most cases, α = 1.8 outperforms the
others. The number of microphones M increases the STOI and
PESQ scores slightly for all methods. To summarize, we found
that the α-stable FastMNMF with an appropriate setting of α
outperforms both Gaussian FastMNMF and ILRMA in terms
of both signal quality and objective perceptual quality. We also
found from our experiments that α=1.8 is the optimal choice
to model the non-stationary behavior of both speech and noise.

6. Conclusion & Future Works
This paper proposes the α-stable FastMNMF based on the
elliptically-contoured multivariate complex α-stable distribution
as an extension to the state-of-the-art FastMNMF, which is a vari-
ant of MNMF where the source SCMs are jointly-diagonalizable
and based on the multivariate complex Gaussian distribution.
Experimental results show that the α-stable FastMNMF outper-
forms the Gaussian counterpart indicating that an α-stable dis-
tribution facilitates better modeling of the source non-stationary
behavior. Future works include the direct estimation of α-stable
parameters, including the covariation matrices and the character-
istic exponent α, and the development of a Cauchy FastMNMF
(α=1), for which a closed-form pdf. is available. An extension
with a deep speech prior [27] can also be proposed and compare
with DNN state-of-the-art speech enhancement algorithms.
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