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Abstract—This paper describes a data-driven music structure
analysis (MSA) method that performs segmentation and cluster-
ing of musical sections for a music signal. Since the intra-section
homogeneity and inter-section difference are important clues for
MSA, most studies on MSA have focused on self-similarity matri-
ces (SSMs) computed from various acoustic features of a music
signal. The performance of this approach, however, might be
limited because the acoustic features used for computing SSMs
are designed manually, and multiple SSMs are often integrated
in a heuristic manner. To overcome these limitations, we propose
a method that learns latent features useful for MSA with a stack
of convolution-augmented multi-head self-attention (CAMHSA)
layers that compute and fuse multiple self-attention maps rep-
resenting multifaceted self-similarity. The estimated features are
then clustered into an appropriate number of sections with a
Gaussian mixture model (GMM). In the segmentation and clus-
tering tasks, the proposed method outperformed baseline methods
based on hand-crafted SSMs. In particular, it achieved state-of-
the-art performance on the segmentation task. We found that the
internal attention maps represent the section boundaries at the
fine and course levels.

I. INTRODUCTION

Audio-based music structure analysis (MSA) aims to split a
musical recording into musically-meaningful segments based
on the homogeneity and heterogeneity of the musical contents,
and then assign a letter (e.g., A, B, or C) or functional label
(e.g., verse, chorus, or bridge) to each of the segments. The
process of MSA can be divided into two sub-tasks: segmenta-
tion and clustering. The former aims to detect the boundaries
of musical sections. The latter aims to categorize the segments
into multiple groups. In the field of music information retrieval
(MIR), the two tasks are often tackled separately.

Given the repetitive nature of music, the self-similarity
matrix (SSM) has been a common feature for tackling MSA
[1]–[3], as repetitions and musically homogeneous parts typ-
ically result in diagonals and block patterns on the SSM.
Nevertheless, the choice of audio representation for computing
the SSM has a crucial impact on the performance of MSA.
For instance, using timbre- or harmony-related features might
yield two different SSMs highlighting possibly two distinct
temporal structures for the same audio signal, as depicted
in Fig. 1. Considering the multiple aspects of similarity, one
may compute multiple SSMs from various kinds of acoustic
features [4]. Several techniques have also been proposed for

Fig. 1: The self-similarity of a music signal varies with the
aspect across musical elements (e.g., timbre, harmony, and
tempo). Learning a multifaceted view of self-similarity is thus
crucial for music structure analysis.

fusing different aspects of similarity [5], [6]. Such an approach,
however, has a performance limitation due to a finite number
of hand-crafted features used for computing SSMs. In addition,
segmentation and clustering algorithms should be tailor-made
according to the characteristics of each SSM.

To overcome these limitations, we propose an MSA method
that performs segmentation and clustering on latent features
learned by a deep neural network (DNN) with a convolution-
augmented multi-head self-attention (CAMHSA) mechanism,
an extension of the multi-head self-attention (MHSA) mech-
anism [7]. The main motivation for our study is that the
self-attention maps computed internally through a stack of
MHSA layers (i.e., the transformer encoder [7]) are expected
to represent multifaceted self-similarity at different abstract
levels. Our method is capable of learning to fuse such self-
attention maps with additional convolutional operations in each
layer. Specifically, the DNN is trained in a supervised manner
to output latent features with which section boundaries are
detected accurately and from which the derived SSM is made
close to the ground-truth SSM. The latent features are then
used for an unsupervised clustering method based on the
Gaussian mixture model (GMM).

The main contributions of this study are twofold. We the-
oretically and experimentally show the effectiveness of the
CAMHSA in learning a multifaceted self-similarity for MSA.
We achieved a state-of-the-art performance of segmentation.
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II. RELATED WORK

This section briefly introduces audio-based music structure
analysis and the self-attention mechanism.

A. Music Structure Analysis

Previous research in MIR often tackles MSA from either the
segmentation or the clustering aspects. For the segmentation
task, a bunch of deep learning approaches is proposed to
identify musical boundaries within a given piece [8]–[12]. This
task is often formulated as a binary classification problem,
where spectrogram-based features, such as chromagram and
mel-spectrogram, and SSMs derived from these features are
commonly used as the inputs. Considering the size of SSMs
grows quadratically with the duration of the corresponding
audio signal, self-similarity lag matrices (SSLMs) [13] can be
used instead to represent the similarities of each audio frame
to a limited number of the preceding frames.

In contrast, the clustering task is typically approached as a
clustering problem. This involves utilizing frame-wise acoustic
features or affinity matrices (either hand-crafted or learned) as
inputs for a clustering algorithm or a matrix decomposition
method in order to group the audio frames [5], [6], [14].
Alternatively, this task can be formulated as a classification
problem, and a model is employed to label each audio frame
with a predefined vocabulary [15]. With manually annotated
datasets such as the SALAMI dataset [16] and the Beatles
dataset (released originally in the Isophonics dataset [17]),
previous studies mostly applied supervised learning frame-
works to the segmentation and clustering tasks. Recently,
contrastive learning approaches are also explored in learning
audio representations for MSA in an unsupervised or self-
supervised fashion [18], [19]. For a detailed review of the
audio-based MSA in MIR, we refer readers to [20].

B. Self-Attention Mechanism

The intra-attention mechanism [21], [22], also known as the
self-attention (SA) [7], is proposed to encode compositional
relationships between a set of elements (e.g., words of a
sentence), and has demonstrated its effectiveness in various
research fields such as natural language processing (NLP)
[23]–[25] and computer vision (CV) [26]–[28]. In the field of
MIR, several studies have utilized the SA [29]–[31]. However,
the potential of the SA for MSA has yet to be investigated.

Formally, given a sequence of t elements with d-dimensional
features, X ∈ Rt×d, the SA yields a new representation of the
sequence, i.e., SA(X) ∈ Rt×d, by internally computing an
affinity matrix or an attention map, A ∈ Rt×t, indicating the
similarity between each pair of the elements in the sequence
as follows:

SA(X) = Afv(X)

= softmax(fq(X)fk(X)T)fv(X),
(1)

where f{q,k,v} : Rdin → Rdout are learnable layers projecting
the query, key, and value [7] (all denote the same input for
self-attention) to a common latent space in which similarity

is measured and the input is represented. With this definition,
the attention map can be regarded as a generalization of a
softmax-normalized SSM computed in the latent space, and it
becomes an exact SSM if fq(·) = fk(·).

Based on the idea of the SA, the multi-head self-attention
(MHSA) mechanism [7] consists of multiple SAs for extracting
multifaceted similarity information from various representation
subspaces as follows:

MHSA(X) = [SA(X(1)), · · · ,SA(X(h))]W, (2)

where h ∈ N+ is the number of heads, X(h=1:h) ∈ Rt× d
h

is a division of X within the feature dimension, [ ] de-
notes a matrix concatenation along the feature dimension, and
W ∈ Rd×d is a learnable parameter used to fuse information
from the attention heads. In practice, the attention heads
can be computed in a parallel manner via manipulating the
dimensionality of f{q,k,v}(X). Let f̂{q,k,v}(X) ∈ Rh×t× d

h be
the dimensionality-manipulated tensor of f{q,k,v}(X). We can
rewrite (2) as follows:

MHSA(X) = restore(Âf̂v(X))W, (3)

where Â = softmax(f̂q(X)f̂k(X)T) and restore(·) get back
the dimensionality from Rh×t× d

h to Rt×d.
The MHSA can attend to various relations in different latent

spaces by referring to multiple SSMs. Previous studies have
pointed out that the attention heads of the MHSA are capable
of capturing different types of implicit relationships between
the elements of a sequence [32], [33]. The MHSA mechanism
is thus favorable for MSA as it can alleviate the feature
selection issue with learned features and affinity matrices.

III. PROPOSED METHOD

To cope with the feature selection issue when employing
SSMs for MSA, we propose the convolution-augmented multi-
head self-attention, which learns to construct and fuse multiple
affinity matrices. Besides, we tackle the MSA with a two-stage
framework. In the first stage, we employ a DNN equipped with
the proposed attention mechanism to jointly predict musical
boundaries and frame-wise representations for a given input.
In the second stage, we obtain structural groups by clustering
the frame-wise representations.

A. Data Representation

The input is a standardized audio signal sampled at 32 kHz.
Three types of acoustic features are extracted from the signal:
mel-spectrogram, chromagram, and tempogram [34]. For mel-
spectrogram (Xm ∈ Rt×80), we use a mel-scaled filterbank of
80 triangular filters from 80 Hz to 16 kHz and scale magnitudes
logarithmically. For chromagram (Xc ∈ Rt×12), the constant-
Q spectrogram of 12 bins per octave is used. For tempogram
(Xt ∈ Rt×384), the rhythmic content is encoded via the local
auto-correlation of the onset strength envelope. All the features
are calculated with librosa [35]. To analyze the entire piece
once, which is crucial for learning long-term music structure,
we compute all three acoustic features with a large hop size of
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1600 points and downsample them with a factor of 10 using
a median filter, resulting in a frame size of 0.5 sec.

The boundary annotation of each piece is given as a binary
sequence (Yb) where 1 indicates a boundary and 0 otherwise;
for the clustering task, the annotations of section names are
converted into a finite alphabet (Ys) and the variation signs
(e.g., ‘′’ and ‘′′’) are ripped off. For instance, the annotation
[verse,verse’,chorus] would become [A,A,B].

B. Convolution-Augmented Multi-Head Self-Attention

While the MHSA is capable of capturing various relantion-
ships between a set of elements, the calculations of the atten-
tion heads are independent of each other. More precisely, each
attention map is computed individually without being related
to other attention maps. In fact, it has been demonstrated that
the tasks of MSA can benefit from integrating multiple affinity
matrices into a united representation [6], [9]. For this reason,
we propose to equip the MHSA with convolutional layers to
fuse information from multiple attention maps. Concretely,
we perform 2-D convolutions on the stack of the attention
maps before the softmax function is applied. The convolution-
augmented MHSA, denoted by CAMHSA(X) ∈ Rt×d, can
thus be formulated as follows (Fig. 2):

CAMHSA(X) = restore(Â∗fv(X̂))W, (4)

where Â∗ = softmax(conv(fq(X̂)fk(X̂)T)) is an attention
map and conv(·) is a stack of two successive convolutional
layers with a layer normalization [36] in between.

In fact, a recent work, i.e., the Conformer [37], has explored
the combination of CNNs and the MHSA mechanism for
modeling both local and global dependencies of a given
sequence. Our approach differs from this work in how con-
volutions are employed. As shown in Fig. 3, the Conformer
employs a 1-D CNN outside the MHSA block to capture local
dependencies of the output sequence, whereas the CAMHSA
performs 2-D convolutions inside the MHSA block to merge
structural information of different attention maps. By utilizing
convolutions, the CAMHSA can learn the correlations among
various attention maps, leading to the enhancement of the
attention heads.

C. Model Architecture

The model for MSA is composed of three parts, as shown in
Fig. 4. The three types of input features are separately encoded
by a 2-D CNN. The encoded features, E{m, c, t} ∈ Rt×d for
X{m, c, t} respectively, are fused with another 2-D CNN. The
fused feature, E ∈ Rt×d, is then fed into a 2-layer transformer
encoder with 8 attention heads [7], in which the MHSA
mechanism is replaced by the CAMHSA. Finally, the latent
representation by the transformer encoder, H ∈ Rt×d, is used
to predict segmentation, Pb ∈ Rt, for the segmentation task
and frame-wise representations, Ps ∈ Rt×d, for the clustering
task with two 1-D CNNs. We set d = 80 for the model. The
details of the computation blocks are depicted in Fig. 5 and
elaborated as follows.

Fig. 2: Schematic diagram of the CAMHSA mechanism. The
CAMHSA transforms X into X′ similarly to the MHSA but
with the addition of 2-D convolutions fusing information of
the attention maps after the first matrix multiplication.

Fig. 3: Comparison between the CAMHSA and the Conformer.
The CAMHSA improves the MHSA by performing 2-D convo-
lutions after the matrix multiplication, whereas the Conformer
utilizes a 1-D CNN for the MHSA output.

1) 2-D CNN (Fig. 5c): The 2-D CNNs are composed of
three successive 2-D convolutions, each of which is followed
by AdaNorm [38], the ReLU activation, and the Squeeze-and-
Excitation (SE) operation [39], two branches of the dimension
reduction performing Max Pool and Dense on the inner di-
mension, and a fusion of the two branches (Dense & AdaNorm
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Fig. 4: Proposed model for MSA. The 2-D CNNs are used to
encode and fuse the inputs; the Transformer encoder captures
structural information via the CAMHSA mechanism; finally,
the 1-D CNN functions as an output layer for boundary
prediction. For each CNN, the number of convolution filters
(c) and the kernel size, represented by height (h) and width
(w), are denoted as c× h× w.

followed by SE). The two branches of the dimension reduction
function as global pooling layers summarizing the information
of the feature dimension of the input (i.e., din in the figure).

2) Transformer Encoder with CAMHSA (Fig. 5b): We use
a variant of the transformer architecture, i.e., the Macaron Net
[37], [40], which has two feed-forward networks (FFNs) sand-
wiching the CAMHSA. Moreover, we employ relative posi-
tional embeddings to represent the distances between elements
[41]. Besides, the residual connection and layer normalization
techniques are also utilized in both the CAMHSA and the FFN
(as used in the transformer blocks) despite not being displayed
in the figure.

3) 1-D CNN (Fig. 5a): The 1-D CNNs consist of two 1-D
convolutions with a ReLU activation in between.

D. Loss Functions

We employ two losses to jointly optimize the model (Fig.
4). The boundary loss is used for the segmentation task, while
the SSM loss is used for the clustering task. The total loss is
thus a summation of the two losses:

Total Loss = Boundary Loss + SSM Loss. (5)

(a) 1-D CNN. (b) Transformer encoder.

(c) 2-D CNN.

Fig. 5: Computation blocks of the segmentation model. The
MHSA block of the Transformer encoder is replaced by the
CAMHSA. The dimensionality is indicated in the brackets.

The boundary loss is a combination of the binary cross entropy
loss (BCE) and the dice loss (DL) [42]:

Boundary Loss = BCE(Pb,Yb) + DL(Pb,Yb), (6)

where DL(A,B) = 1− 2×
∑

A⊙B∑
A2+

∑
B2 (⊙ denotes the Hadamard

product). We integrate the DL with the commonly used BCE,
for it allows the model to pay attention to the overlapped
regions between the predicted segmentation and the ground
truth annotation [43], [44], and thus can alleviate the data
imbalance issue in the segmentation task (i.e., the imbalance
between boundary and non-boundary audio frames).

In contrast, we employ the SSM loss to regulate the pre-
dicted features, i.e., Ps. Specifically, we compute two SSMs,
MPs ∈ Rt×t and MYs ∈ Rt×t, with Ps and Ys respectively,
and then calculate the mean squared error:

SSM Loss =
1

t2

∑
i,j=1:t

(MPs −MYs)2, (7)

where MPs
ij is a similarity score (∈ [0, 2]) measuring the

normalized Euclidean distance between Ps,i and Ps,j , and
MYs

ij = 2 if Ys,i = Ys,j otherwise 0.
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E. Clustering
We use the learned features by the proposed model, i.e.,

Ps, to obtain section groups. We first perform the principal
component analysis (PCA) to reduce the feature dimension
of Ps from 80-D to 60-D. The reduced features are then
clustered with Gaussian mixture models (GMMs). Specifically,
we employ a set of GMMs with the number of mixture
components ranging from 1 to kmax for each input piece, and
then choose the best GMM based on the Bayesian information
criterion (BIC) [45]. Finally, given the boundary prediction, we
smooth the clustering results by reassigning the most common
label in each segment to all frames within the segment.

IV. EVALUATION

In this section, we present the comparative experiment
conducted to evaluate the performance of the proposed method
in terms of segmentation and clustering.

A. Data
To evaluate the proposed method, two datasets have been

included. 1) The Beatles-TUT dataset1 is a refined version of
the Beatles dataset [17] by members of the Tampere University
of Technology. It contains 174 songs by the Beatles and the
corresponding flat (one-level, upper) annotations of structure.
2) The SALAMI dataset [16] is the largest publicly available
set which contains hierarchical (two-level, upper and lower)
annotations for 1,359 tracks. We use version 2.0 of the dataset2

for the evaluation. We acquired 441 audio tracks from the
Internet Archive3 and found 555 matching tracks on YouTube4.

We train and evaluate the proposed model with the two
datasets individually. In the case of the Beatles-TUT dataset,
we exclude 14 songs from the first album for testing and use
the remaining 160 songs for training purposes. As for the
SALAMI dataset, we utilize the 555 tracks from YouTube
for training and the 441 tracks from the Internet Archive for
testing. For both datasets, we augment the training data by 3
times via shifting the pitch of each track by ±1 semitone.

B. Evaluation Metrics
For the segmentation task, we report the Hit Rate measure

[46] with a time tolerance of ±0.5 sec and ±3 sec (which
are the most frequently used values in the literature). This
metric computes precision (P), recall (R), and F1 score (F1)
by checking if a predicted boundary is close enough to an
annotated boundary according to the given time tolerance.

For the clustering task, two metrics are employed. The pair-
wise agreement [47] is used to evaluate the frame-clustering
segmentation regarding a flat annotation, while the L-measure
[48] assesses all segmentation levels as a whole concerning
a hierarchical annotation. Similarly to the Hit Rate measure,
both the pairwise agreement and the L-measure compute the
P, R, and F1 scores. Note that the L-measure is applied to the

1https://pythonhosted.org/msaf/datasets.html.
2https://github.com/DDMAL/salami-data-public.
3https://archive.org/.
4https://github.com/jblsmith/matching-salami.

SALAMI dataset only as there are no hierarchical annotations
in the Beatles-TUT dataset. All the evaluations are done using
the mir eval package [49].

C. Experiment Settings

The proposed model is evaluated separately on the seg-
mentation task and the clustering task. Since the SALAMI
dataset contains annotations at two structure levels, we equip
the proposed model with an additional branch when training
with the SALAMI dataset. Concretely, we create a branch
by duplicating all computation blocks following the stack
operation (see Fig. 4), while the first three 2-D CNNs are
shared by the branches.

To validate our approach regarding the CAMHSA mecha-
nism, we build a baseline model by removing the transformer
encoder from the proposed model and including as additional
inputs the SSMs derived from {Xm, Xc, Xt}. Since it is
memory-consuming to apply deep learning models to multiple
track-level SSMs, we alternatively build three baseline models
(denoted as baseline-{m, c, t}), each of which uses one of
{Xm, Xc, Xt} and its corresponding SSM as inputs.

In comparison to previous work using supervised learning
approaches, we report the best results in [9] (segmentation on
SALAMI) and [11] (segmentation on Beatles and the upper
level of SALAMI). To our knowledge, the former achieves
the best segmentation performance on the SALAMI dataset
while the latter on the Beatles dataset. We also report the
results by [19] (segmentation and clustering on both Beatles
and SALAMI) in comparison with the unsupervised learning
approach. Note that the comparisons to these works should
be taken with a grain of salt for there are many differences
between these works and ours, such as dataset version (e.g.,
Beatles-Isophonics and Beatles-TUT), data usage (e.g., train-
ing and testing sets), and data representation.

Finally, we conduct ablation studies on the CAMHSA mech-
anism and the loss functions. Specifically, we build a model
(denoted as proposed w/o conv) by replacing the CAMHSA
blocks of the proposed model with the MHSA to validate
the incorporation of convolutions; we also train the proposed
model without including the DL in the boundary loss (denoted
as proposed w/o dl) to investigate whether the DL provides any
benefits to the segmentation task.

D. Results and Discussions

1) The Segmentation Task (Table I): On the Beatles-TUT
dataset (Table Ia), our approach consistently outperformed
all the baselines. Likewise, on the SALAMI dataset (Table
Ib), our method was superior in all cases except for Hit
Rate(3) at the lower level. When compared with the previous
works, our method achieved new state-of-the-art segmentation
performances on both datasets. More strikingly, our approach
can rival the unsupervised approach [19] where the amount
of audio tracks for training is two orders of magnitude larger
than ours. Based on these findings, it appears that acquiring
knowledge of multifaceted self-similarity is a more effective
approach than relying on pre-established affinity matrices.
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TABLE I: Performance on the segmentation task. Hit Rate
(0.5) and Hit Rate (3) denote using the metric with a time
threshold of {0.5, 3} sec. baseline-{m, c, t} indicates the base-
line model with {mel-spectrogram, chromagram, tempogram}
and the corresponding SSM as inputs. proposed w/o dl is the
proposed model without using the dice loss for training. ‘–’ is
marked if a measure is not provided in the previous work.

Level Model Hit Rate (0.5) Hit Rate (3)
P R F1 P R F1

upper

proposed 0.555 0.617 0.578 0.675 0.757 0.705
proposed w/o conv 0.536 0.582 0.553 0.700 0.769 0.729
proposed w/o dl 0.546 0.606 0.573 0.689 0.762 0.722
baseline-m 0.436 0.560 0.488 0.559 0.718 0.625
baseline-c 0.424 0.466 0.441 0.640 0.720 0.672
baseline-t 0.425 0.511 0.460 0.608 0.733 0.659
Maezawa [11] 0.507 0.520 0.492 – – –
Buisson et al. [19] – – – – – 0.718

(a) Evaluation on the Beatles-TUT dataset.

Level Model Hit Rate (0.5) Hit Rate (3)
P R F1 P R F1

upper

proposed 0.577 0.586 0.559 0.680 0.688 0.658
proposed w/o conv 0.534 0.631 0.560 0.629 0.737 0.658
proposed w/o dl 0.533 0.537 0.518 0.665 0.666 0.645
baseline-m 0.509 0.549 0.512 0.635 0.684 0.638
baseline-c 0.504 0.375 0.417 0.636 0.472 0.525
baseline-t 0.423 0.339 0.363 0.613 0.490 0.526
Grill & Schlüter [9] – – 0.508 – – –
Maezawa [11] 0.301 0.347 0.306 – – –
Buisson et al. [19] – – – – – 0.627

lower

proposed 0.650 0.657 0.621 0.806 0.820 0.774
proposed w/o conv 0.590 0.611 0.574 0.785 0.821 0.768
proposed w/o dl 0.582 0.598 0.561 0.790 0.812 0.763
baseline-m 0.553 0.553 0.528 0.801 0.810 0.771
baseline-c 0.483 0.581 0.502 0.728 0.886 0.763
baseline-t 0.405 0.349 0.357 0.827 0.742 0.746
Grill & Schlüter [9] – – 0.485 – – –
Buisson et al. [19] – – – – – 0.643

(b) Evaluation on the SALAMI dataset.

2) The Clustering Task (Table II): Similarly to the segmen-
tation task, our approach surpassed the baselines in almost all
cases. In general, the clustering performance on the SALAMI
dataset (Table IIb) is worse than that on the Beatles-TUT
(Table IIa) since the SALAMI dataset is more diverse in terms
of music genres and styles. Upon evaluation, it is apparent
that clustering at the lower level is more challenging than
at the upper level for the SALAMI dataset. This can be
attributed to the greater number of boundaries in the lower
level compared to the upper level. Furthermore, the pairwise
agreement measure is sensitive to the precise placement of the
boundaries between the prediction and the ground truth [50].
Besides, it is worth pointing out that [19] obtained remarkable
performances on the clustering task due to its contrastive
learning objective aligning with the evaluation metrics.

3) Ablation studies (proposed w/o conv and w/o dl): When
the CAMHSA is replaced by the MHSA (proposed w/o conv),
we noticed a decline in both segmentation and clustering
performances. This suggests that the correlations among the

TABLE II: Performance on the clustering task. Note that the
L-measure can be applied to the SALAMI dataset only, and
it computes a unified score over the two levels although we
report the results at the upper level.

Level Model Pairwise Agreement L-measure
P R F1 P R F1

upper

proposed 0.553 0.803 0.648 00–00 00–00 00–00
proposed w/o conv 0.536 0.828 0.639 – – –
proposed w/o dl 0.512 0.753 0.604 – – –
baseline-m 0.509 0.659 0.565 00–00 00–00 00–00
baseline-c 0.542 0.752 0.624 – – –
baseline-t 0.553 0.575 0.554 – – –
Buisson et al. [19] 00–00 00–00 0.723 – – –

(a) Evaluation on the Beatles-TUT dataset.

Level Model Pairwise Agreement L-measure
P R F1 P R F1

upper

proposed 0.561 0.695 0.592 0.420 0.559 0.476
proposed w/o conv 0.550 0.700 0.589 0.412 0.552 0.469
proposed w/o dl 0.581 0.666 0.594 0.442 0.570 0.494
baseline-m 0.590 0.589 0.559 0.417 0.506 0.454
baseline-c 0.538 0.690 0.577 0.406 0.532 0.457
baseline-t 0.596 0.477 0.501 0.405 0.450 0.423
Buisson et al. [19] 00–00 00–00 0.714 0.432 0.694 0.527

lower

proposed 0.428 0.550 0.457 – – –
proposed w/o conv 0.416 0.554 0.450 – – –
proposed w/o dl 0.490 0.454 0.445 – – –
baseline-m 0.438 0.408 0.397 – – –
baseline-c 0.415 0.503 0.430 – – –
baseline-t 0.444 0.289 0.328 – – –
Buisson et al. [19] 00–00 00–00 0.580 00–00 00–00 00–00

(b) Evaluation on the SALAMI dataset.

attention maps of different heads could potentially play a role
in MSA. As for the ablation on the loss functions (proposed
w/o dl), we found that employing the DL positively impacted
the overall performance.

4) Feature Selection Issue (baseline-{m, c, t}): When com-
paring the baselines, it becomes clear that there is no prevailing
feature for MSA. The mel-spectrogram exhibited superiority
in the segmentation task, while the chromagram appeared to
be preferable to the clustering task. Besides, the tempogram
can also provide structural information to some extent. These
results highlight the importance of learning higher-level repre-
sentations and affinity matrices instead of relying on manually
crafted features.

5) Visualization of Attention Maps: To examine the knowl-
edge gained by CAMHSA on MSA, we analyzed the attention
maps of the testing data from the SALAMI dataset. There
were three primary observations exemplified in Fig. 6: 1) the
attention heads display a variety of block patterns; 2) the size
of the block patterns tends to be larger at the upper level
compared to the lower level; 3) the SSM computed from
the learned representation (MPs ) is similar to the annotated
one (MYs ). The first observation is in line with previous
works suggesting that the attention heads can capture diverse
relationships. The second observation reflects the fact that the
musical segments tend to have longer duration at the upper
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Fig. 6: Visualization of the attention maps for the song “Shim Sham” by Caravan of Thieves (song id 1038 of the SALAMI
dataset). M{Ys, Ps} is the SSM computed with {Ys, Ps}, respectively. Only the first three heads (index {0, 1, 2}) at the second
layer of the transformer encoder are shown.

level. The third observation shows that the CAMHSA can
effectively combine attention maps from different sources to
create a cohesive representation (Ps) that closely resembles
the ground truth (Ys) in terms of SMMs.

V. CONCLUSION

This research focused on utilizing the multi-head self-
attention (MHSA) mechanism to learn a multifaceted view of
self-similarity across multiple abstraction levels. To achieve
this, we have developed the convolution-augmented MHSA
(CAMHSA) mechanism, which fuses various perspectives of
self-similarity to extract latent features for audio-based MSA.
Through our experiments, we have clearly demonstrated the
effectiveness of the CAMHSA by comparing it with other
methods that rely on hand-crafted affinity matrices. Especially
for the segmentation task, we obtained new state-of-the-art
results on the Beatles-TUT and the SALAMI datasets. For the
clustering task, we adopted a two-stage framework, where the
learning of audio representations is detached from the succes-
sive clustering stage. The clustering performance would thus
heavily depend on the capability of the employed clustering
algorithm. To mitigate this potential incompatibility, we plan
to involve a deep clustering method in the current framework.
Finally, by fusing different acoustic features, we are able to
find a unified structure for each input signal. Examining the
differences between the attention maps and SSMs derived from
these features can provide musical insights into the relationship
between the unified structure and each specific feature.
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[22] A. P. Parikh, O. Täckström, D. Das, and J. Uszkoreit, “A decomposable
attention model for natural language inference,” in Proceedings of the
Conference on Empirical Methods in Natural Language Processing
(EMNLP), pp. 2249–2255, 2016.

[23] P. Cao, Y. Chen, K. Liu, J. Zhao, and S. Liu, “Adversarial transfer learn-
ing for chinese named entity recognition with self-attention mechanism,”
in Proceedings of the Conference on Empirical Methods in Natural
Language Processing (EMNLP), pp. 182–192, 2018.

[24] J. Devlin, M. Chang, K. Lee, and K. Toutanova, “BERT: pre-training
of deep bidirectional transformers for language understanding,” in Pro-
ceedings of the Conference of the North American Chapter of the Asso-
ciation for Computational Linguistics: Human Language Technologies,
(NAACL-HLT), pp. 4171–4186, 2019.

[25] R. Al-Rfou, D. Choe, N. Constant, M. Guo, and L. Jones, “Character-
level language modeling with deeper self-attention,” in Proceedings of
the 33rd AAAI Conference on Artificial Intelligence (AAAI), pp. 3159–
3166, 2019.

[26] X. Wang, R. B. Girshick, A. Gupta, and K. He, “Non-local neural
networks,” in Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), pp. 7794–7803, 2018.

[27] N. Parmar, A. Vaswani, J. Uszkoreit, L. Kaiser, N. Shazeer, A. Ku, and
D. Tran, “Image transformer,” in Proceedings of the 35th International
Conference on Machine Learning (ICML), vol. 80, pp. 4052–4061, 2018.

[28] H. Zhang, I. J. Goodfellow, D. N. Metaxas, and A. Odena, “Self-attention
generative adversarial networks,” in Proceedings of the 36th Interna-
tional Conference on Machine Learning (ICML), vol. 97, pp. 7354–7363,
2019.

[29] J. Park, K. Choi, S. Jeon, D. Kim, and J. Park, “A bi-directional
Transformer for musical chord recognition,” in Proceedings of the
20th International Society for Music Information Retrieval Conference,
(ISMIR), pp. 620–627, 2019.

[30] T. Chen and L. Su, “Harmony Transformer: Incorporating chord seg-
mentation into harmony recognition,” in Proceedings of the 20th Inter-

national Society for Music Information Retrieval Conference (ISMIR),
pp. 259–267, 2019.

[31] Y. Huang and Y. Yang, “Pop music Transformer: Beat-based modeling
and generation of expressive pop piano compositions,” in Proceedings
of the 28th ACM International Conference on Multimedia (ACM Multi-
media), pp. 1180–1188, 2020.

[32] E. Voita, D. Talbot, F. Moiseev, R. Sennrich, and I. Titov, “Analyzing
multi-head self-attention: Specialized heads do the heavy lifting, the rest
can be pruned,” in Proceedings of the 57th Conference of the Association
for Computational Linguistics (ACL), pp. 5797–5808, 2019.

[33] J. Cordonnier, A. Loukas, and M. Jaggi, “On the relationship between
self-attention and convolutional layers,” in Proceedings of the 8th Inter-
national Conference on Learning Representations (ICLR), 2020.

[34] P. Grosche, M. Müller, and F. Kurth, “Cyclic tempogram - A mid-
level tempo representation for musicsignals,” in Proceedings of the IEEE
International Conference on Acoustics, Speech, and Signal Processing
(ICASSP), pp. 5522–5525, 2010.

[35] B. McFee, C. Raffel, D. Liang, D. P. Ellis, M. McVicar, E. Battenberg,
and O. Nieto, “librosa: Audio and music signal analysis in Python,” in
Proceedings of the 14th python in science conference (SCIPY), vol. 8,
2015.

[36] L. J. Ba, R. Kiros, and G. E. Hinton, “Layer normalization,” in arXiv
preprint arXiv: 1607.06450, 2016.

[37] A. Gulati, J. Qin, C. Chiu, N. Parmar, Y. Zhang, J. Yu, W. Han,
S. Wang, Z. Zhang, Y. Wu, and R. Pang, “Conformer: Convolution-
augmented Transformer for speech recognition,” in Proceedings of the
21st Annual Conference of the International Speech Communication
Association (Interspeech), pp. 5036–5040, 2020.

[38] J. Xu, X. Sun, Z. Zhang, G. Zhao, and J. Lin, “Understanding and im-
proving layer normalization,” in Proceedings of the Annual Conference
on Neural Information Processing Systems (NeurIPS), pp. 4383–4393,
2019.

[39] J. Hu, L. Shen, and G. Sun, “Squeeze-and-excitation networks,” in
Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), pp. 7132–7141, 2018.

[40] Y. Lu, Z. Li, D. He, Z. Sun, B. Dong, T. Qin, L. Wang, and T. Liu, “Un-
derstanding and improving Transformer from a multi-particle dynamic
system point of view,” CoRR abs/1906.02762, 2019.

[41] P. Shaw, J. Uszkoreit, and A. Vaswani, “Self-attention with relative
position representations,” in Proceedings of the Conference of the North
American Chapter of the Association for Computational Linguistics:
Human Language Technologies, (NAACL-HLT), pp. 464–468, 2018.

[42] F. Milletari, N. Navab, and S. Ahmadi, “V-Net: Fully convolutional neu-
ral networks for volumetric medical image segmentation,” in Proceedings
of the 4th International Conference on 3D Vision (3DV), pp. 565–571,
2016.

[43] S. Jadon, “A survey of loss functions for semantic segmentation,” in
Proceedings of the IEEE Conference on Computational Intelligence in
Bioinformatics and Computational Biology (CIBCB), pp. 1–7, 2020.

[44] X. Li, X. Sun, Y. Meng, J. Liang, F. Wu, and J. Li, “Dice loss for data-
imbalanced NLP tasks,” in Proceedings of the 58th Annual Meeting of
the Association for Computational Linguistics (ACL), pp. 465–476, 2020.

[45] G. Schwarz, “Estimating the dimension of a model,” The Annals of
Statistics, vol. 6, no. 2, pp. 461 – 464, 1978.

[46] D. Turnbull, G. R. G. Lanckriet, E. Pampalk, and M. Goto, “A supervised
approach for detecting boundaries in music using difference features and
boosting,” in Proceedings of the 8th International Conference on Music
Information (ISMIR), 2007.

[47] M. Levy and M. B. Sandler, “Structural segmentation of musical audio
by constrained clustering,” IEEE Transactions on Speech and Audio
Processing, vol. 16, no. 2, pp. 318–326, 2008.

[48] B. McFee, O. Nieto, M. M. Farbood, and J. P. Bello, “Evaluating
hierarchical structure in music annotations,” Frontiers in Psychology,
vol. 8, 2017.

[49] C. Raffel, B. McFee, E. J. Humphrey, J. Salamon, O. Nieto, D. Liang,
and D. P. W. Ellis, “mir eval: A transparent implementation of common
MIR metrics,” in Proceedings of the 15th International Society for Music
Information Retrieval Conference (ISMIR), pp. 367–372, 2014.

[50] O. Nieto and J. P. Bello, “Music segment similarity using 2d-fourier
magnitude coefficients,” in Proceedings of the IEEE International Con-
ference on Acoustics, Speech, and Signal Processing (ICASSP), pp. 664–
668, 2014.

172


