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ABSTRACT

This paper studies the prediction of chord progressions for
jazz music by relying on machine learning models. The mo-
tivation of our study comes from the recent success of neu-
ral networks for performing automatic music composition.
Although high accuracies are obtained in single-step predic-
tion scenarios, most models fail to generate accurate multi-
step chord predictions. In this paper, we postulate that this
comes from the multi-scale structure of musical information
and propose new architectures based on an iterative temporal
aggregation of input labels. Specifically, the input and ground
truth labels are merged into increasingly large temporal bags,
on which we train a family of encoder-decoder networks for
each temporal scale. In a second step, we use these pre-
trained encoder bottleneck features at each scale in order to
train a final encoder-decoder network. Furthermore, we rely
on different reductions of the initial chord alphabet into three
adapted chord alphabets. We perform evaluations against sev-
eral state-of-the-art models and show that our multi-scale ar-
chitecture outperforms existing methods in terms of accuracy
and perplexity, while requiring relatively few parameters. We
analyze musical properties of the results, showing the influ-
ence of downbeat position within the analysis window on ac-
curacy, and evaluate errors using a musically-informed dis-
tance metric.

1. INTRODUCTION

Most of today’s Western music is based on an underlying har-
monic structure. This structure describes the progression of
the piece with a certain degree of abstraction and varies at
the scale of the pulse. It can therefore be represented by a
”chord sequence”, with a chord representing the harmonic
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content of a beat. Hence, real-time music improvisation sys-
tem, such as [1], crucially need to be able to predict chords
in real time along with a human musician at a long tempo-
ral horizon. Indeed, chord progressions aim for definite goals
and have the function of establishing or contradicting a tonal-
ity [2]. A long-term horizon is thus necessary since these
structures carry more than the step-by-step conformity of the
music to a local harmony. Specifically, the problem can be
formulated as: given a history of beat-aligned chords, output
a predicted sequence of future beat-aligned chords at a long
temporal horizon. In this paper, we use a set of ground truth
chord sequences as input, but the model described here could
be combined with an automatic chord extractor [3, 4] for use
in a complete improvisation system.

Most chord estimation systems combine a temporal model
and an acoustic model, in order to estimate chord changes and
timing at the audio frame level [5,6]. Such models analyze the
temporal structure of chord sequences, but our task is differ-
ent. We want to predict future chords symbols without any
additional acoustic information at each step of the prediction.

In this paper we use the term multi-step chord sequence
generation for the prediction of a series of possible contin-
uing chords according to an input sequence. Most existing
systems for multi-step chord sequence generation only tar-
get the prediction of the next chord symbol given a sequence,
disregarding repeated chords and timing [7, 8]. Exact tim-
ing is important for our use case, and such models cannot be
used without retraining them on sequences including repeated
chords. However, since the “harmonic rhythm” (frequency at
which the harmony changes) is often 2, 4, or even 8 beats in
the music we study, such models cannot generalize to real-life
scenarios, and can be outperformed by a simple identity func-
tion [9]. Moreover, such predictive models can suffer from er-
ror propagation if used to predict more than a single chord at a
time. Since we want to use our chord predictor in a real-time
improvisation system [1, 10], the ability to predict coherent
long-term sequences is of utmost importance.

In this paper, we study the prediction of a sequence of 8
beat-aligned chords given the 8 previous beat-aligned chords.
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Fig. 1. The three chord vocabularies A1, A2, and A3 we use
in this paper are defined as increasingly complex sets. The
standard triads are shown in dark green.

The majority of chord extraction and prediction studies rely
on a fixed chord alphabet of 25 elements (major and minor
chords for every root note (i.e. c, c#, d, d#, etc.), along with
a no chord symbol), whereas some studies perform an ex-
haustive treatment of every unique set of notes as a different
chord [11–13]. Here, we investigate the effect of using chord
alphabets of various precision. We use previous work [3, 14]
to define three different chord alphabets (as depicted in Fig-
ure 1), and perform an evaluation using each of them.

We propose a multi-scale model which predicts the next 8
chords directly, eliminating the error propagation issue which
inherently exists in single-step prediction models. In order
to provide a multi-scale modeling of chord progressions at
different levels of granularity, we introduce an aggregation
approach, summarizing input chords at different time scales.
First, we train separate encoder-decoders to predict the aggre-
gated chords sequences at each of those time scales. Finally,
we concatenate the bottleneck layers of each of those pre-
trained encoder-decoders and train the multi-scale decoder to
predict the non-aggregated chord sequence from the concate-
nated encodings. This multi-scale design allows our model to
capture the higher-level structure of chord sequences, even in
the presence of multiple repeated chords.

To evaluate our system, we compare its chord prediction
accuracy to a set of various state-of-the-art models. We also
introduce a new musical evaluation process, which uses a
musically informed distance metric to analyze the predicted
chord sequences.

2. PREVIOUS WORK

Most works in chord sequence prediction focus on chord tran-
sitions (eliminating repeated chords), and does not include the
duration of the chords. Such models include Hidden Markov
Models (HMMs) and N-Gram models [7,8,11]. Here, we use
a 9-gram model, trained at the beat level, as a baseline com-
parison. HMMs [12] have also been used for chord sequence
estimation based on the melody or bass line, sometimes by

including a duration component. However, they rely on the
underlying melody to generate an accompanying harmonic
progression, rather than predicting a future chord sequence.
Recently, neural models for audio chord sequence estimation
have also been proposed, but these similarly rely on the un-
derlying audio signal during estimation [5, 6].

Long Short-Term Memory (LSTM) networks have shown
some promising results in chord sequence generation. For
instance, [15] describes an LSTM which can generate a beat-
aligned chord sequence along with an associated monophonic
melody. Similarly, in a recent article [16], a text-based LSTM
is used to perform automatic music composition. The authors
use different types of Recurrent Neural Networks (RNNs) to
generate beat-aligned symbolic chord sequences. They focus
on two different approaches, each with the same basic LSTM
architecture: a word-RNN, which treats each chord as a sin-
gle symbol, and a char-RNN, which treats each character in
a chord’s text-based transcription as a single symbol (in that
case, A:min is a sequence of 5 symbols). In this paper, we
re-implemented the same word-RNN model as a baseline for
comparison. However, we aim to improve the learning by em-
bedding specific multi-step prediction mechanisms, in order
to reduce single-step error propagation.

2.1. Multi-step prediction

It has been observed that using an LSTM for multi-step pre-
diction can suffer from error propagation, where the model
is forced to re-use incorrectly predicted steps [17]. Indeed,
at inference time, the LSTM cannot rely on the ground-truth
sequence and is forced to rely on samples from its previous
output distribution. Thus, the predicted sequences gradually
diverge as the error propagates and gets amplified at each step
of the prediction. Another issue is that the dataset of chord se-
quences contains a large amount of repeated symbols. Hence,
the easiest error minimization for networks would be to ap-
proximate the identity function, by always predicting the next
symbol as repeating the previous one. In order to mitigate
this effect, previous works [16] introduce a diversity parame-
ter that re-weights the LSTM output distribution at each step
in order to penalizes redundancies in the generated sequence.
Instead, we propose to minimize this repetition, as well as
error propagation, by feeding the LSTM non-ground truth
chords during training time using teacher forcing [18] (see
Section 4.3). We also propose to generate the entire sequence
of chords directly using a multi-scale feed-forward model.

3. PROPOSED METHOD

Our proposed approach is based on a sequence-to-sequence
architecture, which is defined by two major components. The
first, called an encoder, takes the input sequence and trans-
forms it into a latent vector. This vector is then used as input
to the second decoder network, which generates the output



Encoder

…

1
0
0
0

0
1
0
0

A B
0
1
0
0

0
0
1
0

B C
0
0
1
0

0
1
0
0

C B
0
0
0
1

0
0
0
1

D D

1
1
0
0

0
1
1
0

0
1
1
0

0
0
0
2

1
2
1
0

0
1
1
2

…
… … … …

A B B D C A A B

Concatenate

Bottleneck

A B D D C A B B

Decoder
Prediction

Loss
Loss

Loss

Ground truth
Input
xt:t+7 xt+8:t+15

Or
ig

ina
l

Ag
gr

eg
at

e
Ag

gr
eg

at
e

S
1

S
2

S
4 z4

z2

z1

a b c

Fig. 2. The architecture of our proposed system.

sequence. Our architecture is a combination of Encoder-
Decoder (ED) networks [19] and an aggregation mechanism
for pre-training the models at various time scales. Here, we
define aggregation as an increase of the temporal span cov-
ered by one point of chord information in the input/target
sequences (as depicted in Figure 2-a). In order to train our
whole architecture, we use a two-step training procedure.
During the first step, we train separately each network with
inputs and targets aggregated at different ratios (Figure 2-b).
The second step performs the training of the whole archi-
tecture where we concatenate the output of the previously
trained encoders (Figure 2-c).

3.1. Multi-scale aggregation

In this work, each chord is represented by a categorical one-
hot vector. We compute aggregated inputs and targets by re-
peatedly increasing the temporal step of each sequence by a
factor of two, and computing the sum of the input vectors
within each step. This results in three input/output sequence
pairs: S1 and T 1, the original one-hot sequences; S2 and T 2,
the sequences with timestep 2; and S4 and T 4, the sequences
with timestep 4. Formally, for each timestep greater than 1,
Sn
i (the ith vector of Sn, 0-indexed) is calculated as shown in

Equation 1. This aggregation is illustrated in Figure 2-a.

Sn
i = S

n/2
2i + S

n/2
2i+1 (1)

3.2. Pre-training networks on aggregated inputs/targets

First, we train two ED networks: one for each of the aggre-
gated input/target pairs. In order to obtain informative latent
spaces we create a bottleneck between the encoder and the
decoder networks, which forces the network to compress the

input data. Hence, we first train each ED network indepen-
dently with aggregated inputs and targets at different ratio.
Our loss function for this training is the Mean Squared Error
between Sn and Tn. Then, from each encoder, we obtain the
latent representation zn of its input sequence Sn.

3.3. Second training of the whole architecture

For the full system, we take the latent representations of the
pre-trained ED networks, and concatenate them with the la-
tent vector of a new ED network whose input is the original
sequence S1. From this concatenated latent vector, we train a
decoder through the cross-entropy loss to the target T 1. Dur-
ing this full-system training, the parameters of the pre-trained
independent encoders are frozen and we optimize only the
parameters of the non-aggregated ED.

4. EXPERIMENTS

4.1. Dataset

In our experiments, we use the Realbook dataset [16], which
contains 2,846 jazz songs based on band-in-a-box files1. All
files come in a xlab format and contain time-aligned beat and
chord information. We choose to work at the beat level, by
processing the xlab files in order to obtain a sequence of one
chord per beat for each song. We perform a 5-fold cross-
validation by randomly splitting the song files into training
(0.6), validation (0.2), and test (0.2) sets with 5 different ran-
dom seeds for the splits. We report results as the average
of the resulting 5 scores. We use all chords sub-sequences
of 8 elements throughout the different sets, beginning at the
first No-chord symbol (padding this input, and the target be-

1http://bhs.minor9.com/



ing chords 2 to 9), and ending where the target is the last 8
chords of each song.

4.2. Alphabet reduction

The dataset is composed by a total alphabet of 1259 chord la-
bels. This great diversity comes from the precision level of
the chosen syntax. Here, we apply a hierarchical reduction of
the original alphabet into three smaller alphabets of varying
levels of specificity as depicted in Figure 1, containing triads
and tetrachords commonly used to write chord progressions.
Each node in the figure (except N.C. for no chord) represents
12 chord symbols (one for each non-enharmonic root note).
Dark green represents the four standard triads: major, mi-
nor, diminished, and augmented. A1 contains 25 symbols,
A2 contains 85 symbols, and A3 contains 169 symbols. The
black lines represent chord reductions, and chord symbols not
in a given alphabet are either reduced to the corresponding
standard triad, or replaced by the no chord symbol.

4.3. Models and training

In order to evaluate our proposed model, we compare it to
several state-of-the-art methods for chord predictions. In this
section, we briefly introduce these models and the different
parameters used for our experiments.

Naive Baselines. We compare our models against two naive
baselines: predicting a random chord at each step; and pre-
dicting the repetition of the most recent chord.

N-grams. The N-gram model estimates the probability of
a chord occurring given the sequence of the previous n − 1
chords. Here, we use n = 9 (a 9-gram model), and train the
model using the Knesser-Ney smoothing [20] approach. For
training, we replace the padded N.C. symbols with a single
start symbol. Since an n-gram model does not require a val-
idation set, we combine this with the training set for training
the n-gram. During decoding, we use a beam search, saving
only the top 100 states (each of which contains a sequence
of 9 chords and an associated probability) at each step. The
probability of a chord at a given step is calculated as the sum
of the (normalized) probabilities of the states in the beam at
that step which contain that chord as their most recent chord.

LSTM. In our experiments, we use the teacher forcing algo-
rithm [18] to train our LSTM. Given an input sequence and a
target sequence, the free training algorithm uses the predicted
output at time t− 1 to compute predicted output at time t. In
our training we use the ground truth data from the time t− 1
or the the predicted output at time t− 1 randomly to compute
the predicted output at time t.

We use the Seq2Seq architecture to build our model [21].
Thus, our network is divided into two parts (encoder and de-
coder). The encoder extracts useful information of the input
sequences and gives this hidden representation to the decoder,

MLP-ED LSTM MultiScale-ED
� encoder layers 2 2 2
� decoder layers 2 2 2
� hidden units 500 500 500
� bottleneck dims 50 - 50
� parameters on A1 0.75M 6.9M 2.1M

Table 1. Parameters for the different neural networks.

which generates the output sequence. We did a grid search to
find correct layer size (see Table 1 for details on the architec-
ture). We add a dropout layer (p = 0.5) between each layer
and a Softmax at the output of the decoder. Our models are
trained with ADAM and a learning rate of 1e−4.

MLP-ED and Multi-scale ED We compare our model to a
MLP Encoder Decoder (MLP-ED). We observed that adding
a bottleneck between the encoder and the decoder slightly im-
proved the results compared to the classical MLP. All encoder
and decoder blocks are defined as fully-connected layers with
ReLU activation. A simple grid search defined that the size of
50 hidden units was the most appropriate for the bottleneck.
The architectures and parameters of all our tested models are
summarized in Table 1.

The Multi-Scale ED is composed of the same encoder and
decoder layers as the MLP-ED in terms of their parameters.
As Table 1 shows, the proposed Multi-Scale AutoEncoder
model has more parameters than the MLP-ED, but fewer than
the LSTM. For these ED networks we add a dropout layer
(p = 0.5) between each layer and a Softmax layer at the
output of our decoder. Our models are trained with ADAM
Optimizer with a learning rate of 1e−4.

5. RESULTS

5.1. Quantitative analysis

We trained all models on the three alphabets described in
Section 4.2. In order to evaluate our models, we compute the
mean prediction accuracy over the output chord sequences
(see Table 2). The first two lines represent the accuracy over
increasingly complex alphabets for the random and repeat
models. Interestingly, the repeat classification score remains
rather high, even for the most complex alphabets, which
shows how common repeated chords are in our dataset. The
last four lines show the accuracy of the more advanced mod-
els, where we can observe that the score decreases as the
alphabet becomes more complex.

First, we can observe that our Multi-Scale ED obtains the
highest results in most cases, outperforming the LSTM in all
scenarios. However, the score obtained with a 9-Gram on A3

is higher than the Multi-Scale ED. We hypothesize that this
can be partly explained by the distribution of chord occur-
rences in our dataset. Many of the chords in A3 are very rare,
and the neural models may simply need more data to perform



Model A1 A2 A3

Random 4.00 1.37 0.59
Repeat 34.2 31.6 31.1
9-Gram 40.4 37.8 36.9
MLP-ED 41.8 37.0 35.2
LSTM 41.8 37.3 36.0
MS-ED 42.3 38.0 36.5

Table 2. Mean prediction accuracy for each method over the
different chord alphabets.

Measure Perplexity Rank
Alphabet A1 A2 A3 A1 A2 A3

9-Gram 7.93 13.3 15.7 4.13 8.05 10.3
MLP-ED 7.45 13.5 16.7 3.98 8.08 10.6
LSTM 7.60 13.3 16.0 4.02 7.94 10.2
MS-ED 7.40 12.9 15.7 3.94 7.74 9.99

Table 3. Left side: Perplexity of each model over the test
dataset; Right side: Mean of the rank of the target chords in
the output probability vectors.

well on such chords. The 9-gram, on the other hand, uses
smoothing to estimate probabilities of rare and unseen chords
(though it is likely that it would not continue to improve as
much as the neural models, given more data). We also com-
pare our models in terms of perplexity and rank of the correct
target chord in the output probability vector (see Table 3). Our
proposed model performs better or equal to all other models
on all alphabets with these metrics, which are arguably more
appropriate for evaluating performance on our task.

5.2. Musical analysis

5.2.1. Euclidean distance

In order to compare different models, we evaluate errors
through a musically-informed distance described in [3]. In
this distance, each chord is associated with a binary pitch
class vector. Then, we compute the Euclidean distance be-
tween the predicted vectors and target chords.

The results, presented in Table 4, show two different ap-

Level Probabilistic Binary
Alphabet A1 A2 A3 A1 A2 A3

9-Gram 1.66 1.61 1.57 1.33 1.30 1.28
MLP-ED 1.61 1.61 1.58 1.28 1.31 1.31
LSTM 1.60 1.59 1.54 1.29 1.30 1.29
MS-ED 1.59 1.58 1.55 1.28 1.29 1.28

Table 4. Mean Euclidean distance between (left) contribution
of all the chords in the output probability vectors, and (right)
chords with the highest probability score in the output vectors.
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Fig. 3. Chord prediction accuracy at each position of the out-
put sequence depending on downbeat position.

proaches of using this distance. The left side of the table
represents the Euclidean distances between the contribution
of all the chords in each model’s output probability vector
(weighted by their probability) and the target chord vectors.
The right side shows the Euclidean distance between the sin-
gle most likely predicted chord at each step and the target
chord. We observe that the Multi-Scale ED always obtains
the best results, except on a single case (A3 and probabilistic
distance), where the LSTM performs best by a small margin.

5.2.2. Influence of the downbeat position in the sequence

Figure 3 shows the prediction accuracy of the Multi-Scale ED
on A1 at each position of the predicted sequence, depending
on the position of the downbeat in the input sequence. Pre-
diction accuracy significantly decreases across each bar line,
likely due to bar-length repetition of chords. The improve-
ment of the score for the first position when the downbeat is in
position 2 can certainly be explained by the fact that the ma-
jority of the RealBook tracks have a binary metric (often 4/4).
We also see that the prediction accuracy of chords on down-
beats is lower than that of the following chords in the same
bar. It can be assumed that this is due to the fact that chords
often change on the downbeat, and that the following target
chords can sometimes have the same harmonic function as
the predicted chords but without being exactly the same. This
approach could be studied using a more functional approach
to harmony as presented in [3]. Both trends are observed over
all models and alphabets. This underlines the importance of
using downbeat position information in the development of
future chord sequence prediction models.

6. CONCLUSION

In the paper, we studied the prediction of beat-synchronous
chord sequences at a long horizon. We introduced a novel
architecture based on the aggregation of multi-scale encoder-
decoder networks. We evaluated our model in terms of ac-
curacy, perplexity and rank over the predicted sequence, as



well as by relying on musically-informed distances between
predicted and target chords.

We showed that our proposed approach provides the best
results for simpler chord alphabets in term of accuracy, per-
plexity, rank and musical evaluations. For the most complex
alphabet, existing methods appear to be competitive with our
approach and should be considered. Our experiments on the
influence of the downbeat position in the input sequence un-
derlines the complexity of predicting chords across bar lines.
For future work, we intend to investigate the use of the down-
beat position in chord sequence prediction systems.
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