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Abstract

This paper presents a neural speech enhancement method that
has a statistical feedback mechanism based on a denoising vari-
ational autoencoder (VAE). Deep generative models of speech
signals have been combined with unsupervised noise models
for enhancing speech robustly regardless of the condition mis-
match from the training data. This approach, however, often
yields unnatural speech-like noise due to the unsuitable prior
distribution on the latent speech representations. To mitigate
this problem, we use a denoising VAE whose encoder estimates
the latent vectors of clean speech from an input mixture signal.
This encoder network is utilized as a prior distribution of the
probabilistic generative model of the input mixture, and its con-
dition mismatch is handled in a Bayesian manner. The speech
signal is estimated by updating the latent vectors to fit the input
mixture while noise is estimated by a nonnegative matrix factor-
ization model. To efficiently train the encoder network, we also
propose a multi-task learning of the denoising VAE with the
standard mask-based enhancement. The experimental results
show that our method outperforms the existing mask-based and
generative enhancement methods in unknown conditions.
Index Terms: speech enhancement, deep speech prior, denois-
ing variational autoencoder, nonnegative matrix factorization

1. Introduction
Speech enhancement is an essential function for various ap-
plications such as automatic speech recognition and speech
telecommunication [1–6]. A standard approach to monaural
speech enhancement is to train a deep neural network (DNN)
in a supervised manner to discriminatively estimate the time-
frequency (TF) mask from a mixture spectrogram [4, 7]. While
such a supervised method has demonstrated excellent perfor-
mance in the known conditions, which are included in the train-
ing data, they often deteriorate with unknown conditions such
as unknown noise environments and speakers.

To obtain the robustness against various environments, a
generative approach has been studied by utilizing the additivity
of audio spectrograms [8–12]. A popular generative model is a
nonnegative matrix factorization (NMF) model [13, 14], which
represents an observed spectrum as the weighted sum of ba-
sis spectra. Since the NMF models are limited by its linearity,
a generative speech model based on a variational autoencoder
(VAE) [15] has been recently gained attention for combining
with the NMF-based noise model [10, 11]. A clean speech sig-
nal is obtained by estimating the latent variables of the com-
bined model to fit the input mixture signal. While this method
precisely estimates the speech spectrogram by using the deep
generative model trained from clean speech signals, the noise
spectrogram is adaptively estimated without any training data.

Low-rank noiseEstimated speechInput mixture
Denoising VAE

Probabilistic feedback

Figure 1: Overview of our adaptive neural speech enhancement

A common problem of the VAE-based enhancement meth-
ods is that the enhanced speech often includes unnatural speech-
like noise, which is caused by an unsuitable prior distribu-
tion. The latent vectors generating a speech spectrogram are
typically assumed to follow the standard Gaussian distribu-
tion [10–12, 16]. While this prior is put on the entire training
data, the latent vector for a time frame of each speech utterance
has a bias originating from the speech characteristics (e.g., its
phone, pitch, and envelope). The existing enhancement meth-
ods ignore this bias and unintentionally try to make the esti-
mated speech into an “average” speech signal. In practice, since
the latent space has a too high degree of freedom, the estimated
signal, including the silent part, is encouraged to be a speech-
like signal resulting in the unnatural noise.

In this paper, we combine the discriminative and genera-
tive approaches for achieving both the accurate speech recon-
struction and high robustness against unknown environments
(Fig. 1). We train a denoising VAE that consists of two net-
works: one is the denoising encoder to estimate the latent vec-
tors of clean speech from a noisy mixture, and the other is the
generative decoder to generate a speech spectrogram from the
latent variable. This training is efficiently conducted by a multi-
task learning with the standard mask-based enhancement. In the
test time, we use the output of the encoder as a prior distribu-
tion of clean speech and update the speech latent vectors to fit
the input mixture signal while the noise signal is estimated by
an NMF-based noise model. The inference algorithm is derived
as a variational Bayesian inference.

The main contribution of this paper is to efficiently combine
discriminative and generative approaches for neural speech en-
hancement. Since the results of the denoising encoder network
are used as prior information, its estimation errors are resolved
based on the likelihood function for an input mixture signal.
The proposed method thus can be considered as an adaptive
speech enhancement method that has the feedback mechanism
based on the generative model. We experimentally show that the
proposed method outperforms the VAE-based semi-supervised
enhancement method. In addition, our method outperforms dis-
criminative enhancement methods in unknown conditions.
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2. Related Work
This section reviews existing adaptive speech enhancement
methods and introduces deep generative models.

2.1. Adaptive neural speech enhancement

Adaptive speech enhancement has been studied by using the
additional classifiers or transfer learning [17–23]. Speech en-
hancement can adapt to a specific speaker by taking as input
a speaker embedding estimated from a clean speech [17, 18].
To obtain the generalizability of unknown speakers without us-
ing clean speech signals, a multi-task learning of enhancement
and speaker embedding has been proposed [19]. A pre-trained
enhancement DNN can be adapted to a test noise environment
based on transfer learning [21, 22]. This approach uses a set of
noisy speech signals of the target domain and adapts the net-
work in an unsupervised manner by conducting an adversarial
training [22] or using an additional senone classifier of speech
signals [21]. A recent study [23] shows that noise classification
with noise embedding can improve the generalization capabil-
ity of unseen noise conditions. While these methods have been
studied to predict a precise enhancement result, the generative
approach aims at maintaining the consistency between the esti-
mated results and the observed signal.

2.2. Deep generative models for speech enhancement

The deep spectral modeling has been investigated to improve
conventional linear modelings such as NMF [8, 9, 24, 25].
Smaragdis et al. [25] proposed a nonlinear extension of NMF
called a nonnegative autoencoder (NAE). They regard the de-
coder of an autoencoder as an alternative of spectral basis vec-
tors and the latent variables as their activations. As in super-
vised NMF, an NAE is trained on speech signals, and its de-
coder is used to separate speech mixtures. It was reported that
NAE can efficiently represent speech spectrograms, which have
been worsely approximated by NMFs. NAE has been extended
with convolutional networks [9] for handling the temporal de-
pendencies of spectrograms, and time-domain networks [24] for
representing source signals precisely.

Hybrid models of NMF and deep spectral models have been
proposed for speech enhancement [10–12, 16]. The speech en-
hancement using an NMF-based noise model and deep speech
model can work in unknown conditions by estimating the la-
tent variables to fit the input mixture. In this approach, a VAE
instead of the normal autoencoder is utilized to regularize the
speech model for preventing the overfitting. More precisely, the
speech signals are represented by the decoder of a VAE whose
latent variable is assumed to follow a standard Gaussian distri-
bution. The original method has been proposed with a Markov-
chain Monte-Carlo algorithm [11]. Fast inference algorithms
such as Markov-chain expectation-maximization (MCEM) [16]
and approximated variational EM (VEM) [10, 12] algorithms
have been proposed.

3. Adaptive Neural Speech Enhancement
Our method utilizes a denoising VAE whose encoder estimates
the posterior distribution of the speech latent vectors given a
mixture signal. We use this posterior distribution as a prior dis-
tribution of the probabilistic generative model of the input mix-
ture. Although the output of the encoder network often includes
estimation errors due to the condition mismatch, the latent vec-
tors are jointly updated with the NMF-based noise model such

that the estimated spectrogram fits the input mixture signal. The
enhancement algorithm is formulated as a VEM algorithm.

3.1. Denoising variational autoencoder

We represent a speech spectrogram S ∈ CT×F based on a deep
spectral model [11]. The speech spectrogram is assumed to fol-
low a zero-mean complex Gaussian distribution characterized
by D-dimensional latent vectors Z = [z1, . . . , zT ]

T ∈ RT×D:

stf | Z ∼ NC
(
0, σ2

tf (Z)
)
, (1)

where σ2
tf : RT×D → R+ is a nonlinear function (i.e., a de-

coder network) associating the latent representation Z and the
power spectral density (PSD) of the speech spectrogram. In the
training, the latent variable Z is assumed to follow a standard
Gaussian distribution:

ztd ∼ N (0, 1) . (2)

The denoising VAE consists of a denoising encoder net-
work that predicts the posterior distribution q(Z|X) given a
noisy mixture X ∈ CT×F , and the generative decoder network
σ2
tf . More specifically, the encoder network approximates the

posterior distribution p(Z|X) with Gaussian distributions:

q(Z|X) =
∏
t,d

N
(
µtd(X), φ2

td(X)
)

(3)

where µtd(X) ∈ R and φ2
td(X) ∈ R+ are the outputs of the

encoder network.
The encoder and decoder networks are jointly trained by

maximizing a lower bound of the log marginal likelihood
log p(S) [26]. This lower bound is called an evidence lower
bound (ELBO) whose maximization corresponds to the min-
imization of the expected Kullback-Leibler (KL) divergence
Ep(X|S)[DKL[q(Z|X)|p(Z|S)]]. The ELBO for a speech sig-
nal S in the training dataset is defined as follows:

LDnVAE = Ep(X|S)

[
Eq(Z|X)[log p(S|Z)]

− DKL[q(Z|X)|p(Z)]] . (4)

The expectations by p(X|S) are difficult to calculate because
the generative model of a mixture signal p(X|S) is implicitly
assumed in the training stage. They are approximated by the
training samples of the clean speech S and noisy mixture X:

LDnVAE ≈ −
∑
t,f

{
Eq[log σ

2
tf (Z)] + Eq

[
|stf |2

σ2
tf (Z)

]}

+
∑
u,d

{
1

2
+ log φtd(X)− µ2

td(X) + φ2
td(X)

2

}
. (5)

The remaining expectations are approximately calculated with
Monte-Carlo sampling from the variational posterior q(Z|X).
The denoising VAE is trained such that the encoder and de-
coder networks maximize this approximated ELBO by using
a stochastic gradient descent (SGD) method [27].

3.2. Multi-task learning

Since the gradient for the denoising encoder is propagated
through the decoder, it is difficult to efficiently train the de-
noising task. To overcome this limitation, we jointly train a
mask-based speech enhancement as a multi-task learning. This
subtask is called the phase sensitive approximation (PSA) [7],
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which is often used for speech enhancement:

LPSA=
∑
t,f

(mtf (X)|xtf | − cos(∠xtf − ∠stf )|stf |)2 , (6)

where mtf (X) ∈ [0, 1] is the speech mask estimated by a net-
work that shares the most of the parameters with the encoder
network (as detailed in Sec. 4 with Fig. 2). The entire objective
function to be maximized is defined as follows:

LMTL = LDnVAE − αLPSA, (7)

where α ∈ R+ is a scaling parameter that controls the effect of
the subtask.

3.3. Generative model of mixture signals

To refine the estimated latent vector Z, we utilize a probabilis-
tic generative model of a noisy speech signal [11, 16]. In this
model, the input complex spectrogram X ∈ CT×F is repre-
sented by the sum of a speech spectrogram S ∈ CT×F and a
noise spectrogram N ∈ CT×F as follows:

xtf = stf + ntf . (8)

We assume the speech generative model of Eq. (1) as in the
denoising VAE. In contrast, we replace the standard Gaussian
prior of Eq. (2) with the prior distribution utilizing the outputs
of the denoising encoder network:

p(Z) =
∏
t,d

N
(
µtd(X), φ2

td(X) + σ2
z

)
, (9)

where σ2
z ∈ R+ represents a variance parameter that controls

how Z differs from the output of the encoder network.
On the other hand, the PSD of the noise spectrogram is as-

sumed to be low-rank and represented by an NMF model. More
specifically, the noise PSD is represented by the product of K
spectral basis vectors W = [w1, . . . ,wK ] ∈ RF×K

+ and their
activation vectors H ∈ RK×T

+ :

ntf |W,H ∼ NC

(
0,
∑
k

wfkhkt

)
. (10)

By marginalizing out the speech and noise complex spectro-
grams S and N, we obtain the following Gaussian likelihood:

xtf |W,H,Z ∼ NC

(
0,
∑
k

wfkhkt + σ2
tf (Z)

)
. (11)

Maximization of this likelihood is equivalent to minimization
of the Itakura-Saito divergence between the observation |xtf |2
and the estimated PSD

∑
k wfkhkt + σ2

tf (Z).

3.4. Statistical Inference

The purpose of this inference is to update the latent vector Z
by estimating its posterior p(Z|X,W,H). This posterior is
approximately estimated by a variational distribution r(Z):

r(Z) =
∏
t,d

N (ztd | atd, exp(btd)) , (12)

where atd ∈ R and btd ∈ R represent the mean and log-
variance parameters of the Gaussian posterior, respectively.
These two parameters are initialized by the outputs of the de-
noising encoder network (µtd(X) and log φ2

td(X)) and updated
such that the KL divergenceDKL[r(Z)|p(Z|X,W,H)] is min-
imized. As in the training of the denoising VAE, this minimiza-
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Figure 2: Network architectures of encoder and decoder

tion is conducted by maximizing an ELBO:

L = Er[log p(X|W,H,Z)]−DKL[r(Z)|p(Z)] (13)

= −
∑
t,f

{
Er[log ytf ] + |xtf |2Er

[
y−1
tf

]}
+
∑
t,d

{
btd
2
− exp(btd)+(atd−µtd(X))2

2(φ2
td(X) + σ2

z)

}
+const. (14)

where ytf =
∑

k wfkhkt + σ2
tf (Z) is the estimated PSD of

xtf .The expectations by r(Z) are approximately calculated by
the Monte-Carlo sampling. The parameters of the variational
posterior atd and btd are updated by an SGD method.

The noise parameters W and H are alternatively and iter-
atively updated with the variational posterior such that the log
marginal likelihood log p(X|W,H) is maximized as in [16]:

wfk ← wfk

√√√√∑t |xtf |2hktEr[y
−2
tf ]∑

t hktEr[y
−1
tf ]

, (15)

hkt ← hkt

√√√√∑f |xtf |2wfkEr[y
−2
tf ]∑

f wfkEr[y
−1
tf ]

. (16)

In this paper, we calculate the expectations E[y−1
tf ] and E[y−2

tf ]

with 10 samples from r(Z). The estimated clean speech signal
is finally obtained by a TF-mask estimated with Wiener filtering
from the estimated speech and noise PSDs.

4. Experimental Evaluation
Our speech enhancement is evaluated with simulated noisy
speech signals whose noise is recorded in real environments.

4.1. Dataset
The networks used in this evaluation was trained with the train-
ing set of the CHiME-4 dataset [28]. This subset has 7138 sim-
ulated noisy utterances with the corresponding clean speech and
noise signals. The speech signals were provided by the WSJ0
English speech corpus [29]. The noise signals were recorded
at the four different environments: on a bus, in a cafeteria, in a
pedestrian area, and on a street junction. The sampling rate of
these signals was 16 kHz.

The simulated test set of the CHiME-4 dataset was used
for evaluating the proposed method in known conditions. This
test set has 1320 noisy utterances generated in the same way as
those in the training set. Note that the speakers of this test set
are independent from the training set. While the noise signals in
this set were captured in the same environments of those in the
training set, the instances used for each subset are isolated. The
average signal-to-noise ratio (SNR) of this subset was 7.51 dB.

To evaluate the performance in unseen conditions, we gen-
erated another test set called the TIMIT+ROUEN test set. In
this test set, the speech signals were provided by the TIMIT En-
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Table 1: Enhancement results for known (CHiME-4) data

Method p(Z) SDR [dB] PESQ STOI

BiLSTM-MSA – 14.22 2.74 0.93
BiLSTM-PSA – 14.62 2.67 0.92

VAE-NMF Eq. (2) 12.68 2.56 0.91

DnVAE-NMF w/ MTL Fixed 13.75 2.67 0.92
DnVAE-NMF w/ MTL Eq. (2) 13.04 2.59 0.91
DnVAE-NMF Eq. (9) 13.88 2.68 0.92

DnVAE-NMF w/ MTL Eq. (9) 14.20 2.70 0.93

Noisy mixture – 7.54 2.18 0.87

glish speech corpus [30], and the noise signals were provided
by the LITIS ROUEN Audio scene dataset [31]. We generated
1320 noisy speech signals by randomly selecting speech and
noise signals from these datasets. The speech and noise sig-
nals were mixed in SNRs randomly sampled from those of the
CHiME-4 test set such that the average SNRs of the two test
sets were equivalent.

4.2. Experimental conditions

The architectures of the encoder and decoder networks of the
proposed method is summarized in Fig. 2. The encoder net-
work consisted of three bidirectional long-short term memory
(BiLSTM) layers followed by three fully-connected (FC) layers
that respectively output µtd, φtd, and mtf . The decoder con-
sisted of a BiLSTM layer followed by a fully-connected layer
that outputs σ2

tf . Each of the BiLSTMs had 512-dimensional
hidden units trained with a dropout rate of 0.2.

The hyperparameters of the proposed method were empir-
ically determined as follows. The denoising VAE was trained
by an Adam optimizer [27] for 200 epochs at the learning rate
of 1.0 × 10−3. The dimension of the latent variable D and the
number of bases K were set to 20 and 5, respectively. The scal-
ing parameter of the multi-task learning α was set to 1.0. The
variational posterior r(Z) and the model parameters W and H
were alternatively and iteratively updated for 200 times. The
variational posterior r(Z) was updated by the Adam optimizer
at the learning rate of 0.2. The scaling parameter σz was set to
0.1. The noise parameters W and H were randomly initialized.
The input spectrograms were obtained by the short time Fourier
transform with the window size of 1024 samples and the hop
length of 256 samples.

The proposed method (DnVAE-NMF) was evaluated in
terms of the three criteria: source-to-distortion ratio (SDR) in
dB [32], perceptual evaluation of speech quality (PESQ) rang-
ing from −0.5 to 4.5 [33], and short-time objective intelligi-
bility (STOI) ranging from 0 to 1 [34]. As baseline meth-
ods, we evaluated two supervised mask-based methods called
BiLSTM-MSA and -PSA. The BiLSTM-MSA and -PSA train
enhancement networks with a magnitude spectrum approxima-
tion (MSA) criterion and a PSA criterion [7], respectively. The
network architecture of them was the same as that of the denois-
ing encoder network. We also evaluated the semi-supervised
version of the proposed method (VAE-NMF) that is a VEM ver-
sion of [11]. We trained a VAE that has the same architecture as
the proposed denoising VAE by using only clean speech signals.

4.3. Experimental results

The enhancement performance is shown in Tables 1 and 2.
In the experiments using the CHiME-4 test set (Table 1), the

Table 2:Enhancement results for unseen (TIMIT+ROUEN) data

Method p(Z) SDR [dB] PESQ STOI

BiLSTM-MSA – 12.14 2.64 0.87
BiLSTM-PSA – 12.40 2.48 0.87

VAE-NMF Eq. (2) 12.01 2.56 0.88

DnVAE-NMF w/ MTL Fixed 11.72 2.55 0.87
DnVAE-NMF w/ MTL Eq. (2) 12.45 2.57 0.88
DnVAE-NMF Eq. (9) 12.44 2.59 0.88

DnVAE-NMF w/ MTL Eq. (9) 12.75 2.65 0.89

Noisy mixture – 7.57 2.20 0.83

highest performance was achieved by BiLSTM-MSA and -
PSA, which are discriminative methods. The proposed DnVAE-
NMF with the multi-task learning (MTL) performed compara-
ble to them in STOI and significantly outperformed the semi-
supervised VAE-NMF in all of the three criteria. In contrast,
in the experiments using the TIMIT+ROUEN test set (Table 2),
which is the unknown condition for the discriminative methods,
BiLSTM-MSA and -PSA significantly deteriorated. Although
the proposed DnVAE-NMF was also degraded in this condition,
its performance was improved from those of the mask-based
methods in all of the SDR, PESQ, and STOI. These results show
that the proposed DnVAE-NMF successfully combined the dis-
criminative and generative methods in a unified framework.

The proposed DnVAE-NMF was also compared with its
three variants. The first variant fixed the posterior r(Z) to the
output of the denoising encoder q(Z), the second one used the
standard Gaussian prior (Eq. (2)) on Z instead of using the en-
coder output (Eq. (9)), and the third was trained without multi-
task learning. The proposed DnVAE-NMF outperformed all of
the three variants, and we can see that updating the posterior
r(Z) with a modified prior (Eq. (9)) and conducting the multi-
task learning were effective for improving the performance.

5. Conclusion
This paper presented an adaptive neural speech enhancement
based on a denoising VAE that consists of a denoising en-
coder network and a generative decoder network. The out-
put of the denoising encoder network is used to construct a
prior distribution of the latent variable, and the latent variable
is updated to fit the input mixture by using the speech gener-
ative model (decoder) and the NMF-based noise model. We
also proposed a multi-task learning of the denoising VAE and
mask-based enhancement such that the denoising encoder is ef-
ficiently trained. Experimental results showed that our method
outperformed mask-based methods in unknown environments.

One interesting future direction is to extent the proposed
method to a time-domain method. Recent speech enhancement
(and separation) methods improve their performance by directly
enhancing time domain signals [35, 36]. The proposed genera-
tive framework would be applied to the time-domain methods
to obtain robustness against unknown environments. Since our
method ignores the probabilistic dependencies of the latent vari-
ables among time frames, we will also investigate more precise
prior models of the latent variable with a recurrent VAE [10,37].
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[18] K. Žmolı́ková, M. Delcroix, K. Kinoshita, T. Ochiai, T. Nakatani,
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